
Isothermal Two-Phase Flow

This process ignores temperature effects and the partially saturated sample is treated
as an immiscible two-phase system within the voids of the solid skeleton. In the pressure-
pressure formulation the primary variables are (1) gas pressure pg and (2) capillary pressure
pc. In the pressure-saturation formulation the primary variables are non-wetting phase
saturation Snw and wetting-phase pressure pw. In the benchmarks shown here, both fluids
are assumed incompressible[1].

1. Mathematical Framework

Mass balance equation

Consider two-phase flow in porous media, e.g liquid (denoted by l) and gas (denoted
by g). For each phase in two-phase fluid flow, mass conservation is given by the following
equation,

∂

∂t
(nSgρgk + nSlρlk) +∇ · (Jgk + Jlk) = Qk (1)

where S is saturation, ρ stands for phase density, n is the porosity, J is total flux. The
subscript k in equation (1) denotes the component, e.g air (k = a) or water (k = w). For
any phase γ = (g, l), an advection vector JA

γ
k and a diffusion vector JD

γ
k comprise the total

flux, i.e.,

Jγk = JA
γ
k + JD

γ
k (2)

According to Darcy’s law, the advective part of the total flux may be written as

JA
γ
k = −ργk

kkγrel
µγ

(∇pγ − ργg) , (3)

where k is the intrinsic permeability, kγrel is the relative permeability of the phase γ, and
µγ is the viscosity.

The diffusive part of the total flux is given by Fick’s law

JD
γ
k = −nSγργDγ

k∇
(
ργk
ργ

)
, (4)

where D is the diffusion coefficient tensor. Since ργ = ργa + ργw, we have

JD
γ
w + JD

γ
a = 0 (5)

under the assumption Dγ
a = Dγ

w.

June 20, 2018



1

Consider a water-air mixture. We expand the mass balance equation (1) with the flux
defined in equations (2) . For the water component, the diffusive part of the total flux takes
the form

JD
l
w = −nSlρlDl

w∇
(
ρlw
ρl

)
, JD

g
w = −nSgρgDg

w∇
(
ρgw
ρg

)
. (6)

Obviously, Dl
w = 0. Therefore, the mass balance equation for water component can be

written as follows

∂

∂t

(
nSgρgw + nSlρlw

)
−∇ ·

[
ρlw

kklrel
µl

(
∇pl − ρlg

)]
−∇ ·

[
ρgw

kkgrel
µg

(∇pg − ρgg)

]
−∇ ·

[
nSgρgDg

w∇
(
ρgw
ρg

)]
= Qw. (7)

Since the capillary pressure pc is chosen as one of the two unknowns of equation (1) and
Sg = 1− Sl, equation (7) becomes

n(ρlw − ρgw)
∂Sl

∂t
+ (1− Sl)n∂ρ

g
w

∂t
−∇ ·

[
ρlw

kklrel
µl

(
∇(pg − pc)− ρlg

)]
−∇ ·

[
ρgw

kkgrel
µg

(∇pg − ρgg)

]
−∇ ·

[
nSgρgDg

w∇
(
ρgw
ρg

)]
= Qw. (8)

Similar to the previous procedure, the diffusion part of the total flux of air component
can be written as

JD
l
a = −nSlρlDl

a∇
(
ρla
ρl

)
, JD

a
a = −nSgρgDg

a∇
(
ρga
ρg

)
. (9)

The density shift from air component to liquid ρla is very small and can be omitted.
Therefore, we can assume JD

l
a ≈ 0. As a consequence, the mass balance equation for air

component is derived:

∂

∂t
(nSgρga)−

∇ ·
[
ρga

kkgrel
µg

(∇pg − ρgg)

]
−∇ ·

[
nSgρgDg

a∇
(
ρga
ρg

)]
= Qa. (10)

Expanding the temporary derivative term of equation (1) yields

−nρga
∂Sl

∂t
+ (1− Sl)n∂ρ

g
a

∂t
−

∇ ·
[
ρga

kkgrel
µg

(∇pg − ρgg)

]
−∇ ·

[
nSgρgDg

a∇
(
ρga
ρg

)]
= Qa. (11)

The mass balance equations (8) and (11) are exactly the same as described in [2].
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1.1. Pressure-pressure (pp) scheme

Based on the description of isothermal two-phase flow above, (8) and (11) can be modified
in order to obtain governing equations for isothermal two-phase flow in a porous medium.
In this formulation primary variables are gas pressure pg, and capilary pressure pc.

The basic equations of the isothermal two-phase flow system are:

nρw
∂Sw
∂pc

ṗc +∇ ·
[
ρw

kkrelw
µw

(−∇pg +∇pc + ρwg)

]
= Qw (12)

−nρa∂Sw
∂pc

ṗc + n(1− Sw)

(
∂ρa
∂pg

ṗg +
∂ρa
∂pc

ṗc

)
+

∇ ·
[
ρa

kkrela
µa

(−∇pg + ρag)

]
= Qa (13)

2. Liakopoulos experiment

Definition

This benchmark is based on an experiment by Liakopoulus[3]and is proposed by Lewis
and Schrefler [4](pp 167–174).

Results

The temporal evolution of vertical profiles of primary variables (capillary and gas pres-
sure) are given in Fig. 1. The results agree well with the results generated by OGS5.

Property Symbol Value Unit

Porosity n – 2.975× 10−1

Permeability κ m2 4.5000× 10−13

Liquid dynamic viscosity µw Pa.s 1.0000× 10−3

Gas dynamic viscosity µa Pa.s 1.8× 10−5

Liquid density ρw kg.m−3 1.0000× 103

Gas density ρa kg.m−3 Ideal Gas Law’s
Capillary pressure pc Pa Experimental Curve
Relative permeability κrelw – Experimenta Curve
Relative permeability κrela – Brook-Corey functions

Table 1: Material parameters for the Liakopoulos problem.
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Figure 1: Vertical profiles of capillary (top) and gas pressures (bottom).

3. McWhorter problem

Problem definition
The test benchmark problem is proposed by McWhorter and Sunada [5]. It is applied
to simulate the capillary effects in immiscible two-phase flow transport. The benchmark
is formulated as if the instantaneous displacement occurs in one-dimensional horizontal
reservoir initially occupied by oil. Solution has been obtain through solving the governing
equations 13 by pressure-pressure scheme described in sec (sec.1.1). Here the flow is governed
by capillary force when water saturation at the left end of the horizontal column is kept to
be one, while the right end is kept to be no flux at all. So for no source term is accounted.

Figure 2: Schematic of the benchmark formulated to test McWhorter and Sunada’s analytical solution.

Results
Based on the above discussion OpenGeoSys-6 produces agreeable solution compared with
OpenGeoSys-5. Fig. 3 shows water saturation profile, Sw with a fine grid along with 2.6m
long horizontal column for different time steps. Line elements has been used with time and
space discretization δt = 0.5s and δx = 0.05m respectively.
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Figure 3: Water saturation, Sw profile of the present result along with analytical solution based on one by
McWhorter.
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