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1. Analytical solutions

In the following are reported the formula relatives to the analytical so-
lutions of the stress and displacement fields around a thick-walled pipe and
sphere in elastic conditions and a thick walled sphere in elasto-plastic con-
ditions. The full derivation of the analytical solutions can be found in [1].

1.1. Thick-walled elastic cylinder
The stress field around a thick walled elastic cylinder in plain strain

conditions is expressed by the set of equations
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defining the radial σrr, circumferential σθθ and longitudinal σzz stress
components in cylindrical coordinates, where the z axis is along the cylin-
der directive. The thick walled cylinder is subjected to an internal and an
external pressure, respectively pi and pa, and has internal and external radii
of Ri and Ra. The radial coordinate is r and ν is Poisson’s ratio. The radial
displacement ur writes
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where E is Young’s modulus.
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1.2. Thick-walled elastic sphere
The stress field around a thick walled elastic sphere of internal and exter-

nal radii Ri and Ra, respectively, and subjected to and internal and external
pressure of pi and pa, respectively, is given by
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where in spherical coordinates, θ and φ define the angular coordinates
and r the radial one. The radial displacement field writes
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1.3. Thick walled plastic sphere
The solution obtained is based on perfect plasticity theory (no hardening

or softening) and the Von Mises plastic yield surface F , which reads

F = 1
2sijsij − 1

3σ
2
F = 0, (8)

where sij = σij −1/3σkkδij is the deviatoric stress tensor and σF is the yield
stress. A new variable rp defines the boundary between the elastic and the
plastic region and the yield pressure reads
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In the elastic region, the stress components are
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and the radial displacement is
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In the plastic region, stress components write
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while the radial displacement is
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2. Numerical analyses and comparison

2.1. Elastic cylinder
The solution was obtained with the values reported in Table 2.1. The

comparison between analytical and numerical solution is reported in Figure
1 for plain strain conditions and in Figure 2 for axisymmetric conditions.
The numerical solution matches well the analytical ones.

Table 1: Values of parameters for elastic cylinder problem.

Parameter Value Units
Ri 1 mm
Ra 2 mm
pi 52.2 MPa
pa 0.1 MPa
ν 0.3 -
E 210 GPa
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Figure 1: Plain strain elastic cylinder comparison between numerical and analytical re-
sults.
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Figure 2: Axisymmetric elastic cylinder comparison between numerical and analytical
results.

2.2. Elastic sphere
The comparison is carried out for the case of an elastic sphere of which

properties are reported in Table 2.2. Two models are used for the numerical
computations, a bi-dimensional axisymmetric one and a full tri-dimensional
model. Results comparison for the axisymmetric model are reported in Fig-
ure 3 and for the tri-dimensional one in Figure 4. There is good agreement
between numerical computations and the analytical solution. The slight
discrepancy at the inner boundary is caused by nodal interpolation error.
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Table 2: Values of parameters for elastic sphere problem.

Parameter Value Units
Ri 1 mm
Ra 2 mm
pi 1 kPa
pa 100 kPa
ν 0.35 -
E 125 GPa
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Figure 3: Axisymmetric elastic sphere comparison between numerical and analytical re-
sults.
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Figure 4: Tri-dimensional elastic sphere comparison between numerical and analytical
results.
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2.3. Plastic sphere
The final benchmarks consists in simulating an elasto-plastic sphere

subjected to an internal pressure. The material properties, geometry and
boundary conditions are reported in Table 2.3. The plastic radius rp was
set to be at the middle point of the sphere wall thickness. Based on this
value, through Equation 9 the plastic stress ppl was computed. In the nu-
merical analysis, the internal pressure was increased linearly to the value of
the computed plastic pressure ppl. Results comparison are shown in Figure
5 and once again, the numerical solution well compares to the analytical
one, validating the pressure boundary conditions implementation in OGS-6.

Table 3: Values of parameters for plastic sphere problem.

Parameter Value Units
Ri 1 mm
Ra 2 mm
pi 239.27 MPa
pa 0 MPa
ν 0.35 -
E 125 GPa
σF 200 MPa
rp 1.5 mm
ppl 239.27 MPa
E 125 GPa

1.0 1.2 1.4 1.6 1.8 2.0
r / mm

250

200

150

100

50

0

50

100

150

σ
 /

 M
P

a

σrr analytical

σθθ analytical

σrr OGS-6

σθθ OGS-6

1.0 1.2 1.4 1.6 1.8 2.0
r / mm

0.5

1.0

1.5

2.0

2.5

3.0

u
r
 /

 µ
m

ur analytical

ur OGS-6

1.6

1.7

1.8

1.9

2.0

2.1

∆
re

l

1e 3

difference

Figure 5: Axisymmetric plastic sphere comparison between numerical and analytical re-
sults.
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We note that, as for the previous comparison in elastic condition, a
greater discrepancy in the stress field between numerical and analytical so-
lution is found at the inner boundary. Part of this is explained by the inter-
polation of quantities that are computed at integration points of the mesh
(stress tensor): an error occurs during nodal interpolation. This discrepancy
is mostly related to the fact that currently pressure boundary conditions are
applied to the linearized normal of the boundary, and not to the true non-
linear geometry. This is illustrated in Figure ??, in which the interpolation
error for the case of the plastic sphere is shown. Future developments will
include non-linear pressure boundary conditions and integration point out-
put.
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Figure 6: Axisymmetric plastic sphere: numerical results on the left and interpolation
residuals of stress on the right.
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