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This report describes the implementation of the Modified Cambridge Clay
(MCC) material model for small strains in the open-source multi-field soft-
ware OpenGeoSys. For this, the set of constitutive equations is outlined
and summarized. Kinematic assumptions and consequences of the pressure-
dependent hypoelastic behavior are discussed. An implicit numerical solution
scheme is presented with additional options of refinement and stabilization.
Furthermore, a simplified version with constant elastic material parameters
is provided. Based on the interface MFront, the implementation is outlined
briefly. Then, numerical studies are presented for a single integration point
using MFront mtest, and eventually for meshes consisting of one or multiple
finite elements using OpenGeoSys.

1. Introduction

The Cambridge (Cam) clay model [5, 4, 6, 7, 15] describes the stress-dependent defor-
mation behaviour of cohesive soils.1 Thereby, effects like

1. elasto-plastic deformation,

2. consolidation and irreversible (plastic) pore compaction,

3. hardening and softening,

4. different loading and unloading stiffness

can be considered. Typical applications for the Cam clay model are the calculation of
soil strata, for example in geomechanical simulations. The modified Cam clay (MCC)
model is characterized by a quadratic (elliptic) yield surface. The goal of this technical
report is a consistent and clear presentation of the MCC model ready for implementation
and practical use in continuum mechanical simulations using FEM. Here, the material
model interface MFront is used. For the sake of compactness, a symbolic tensor notation
is used where the number of underscores indicates the order of the tensor object.

1However, as will be shown later, this material model has no inherent tensile strength.
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2. Constitutive equations

2.1. Preliminaries

In the small-strain setting, there is an additive split of the linear strain tensor reading

ε = εe + εp . (1)

The generalized Hooke’s law relates elastic strains with stresses as

σ = D ·· εe . (2)

Splitting the stress tensor2 with respect to deviatoric and volumetric parts yields

σ = σD +
1

3
I1(σ) I . (3)

Therewith, the von-Mises stress and the hydrostatic pressure is defined as

q :=
√

3
2
σD ·· σD , p := −1

3
I1(σ) . (4)

Consequently, positive values of p represent a pressure whereas negative values represent
hydrostatic tension, as expected. With this, the stress tensor split reads σ = σD − pI.
Later, the following derivatives will be required:

∂q

∂σ
=

3

2

σD

q
,

∂p

∂σ
= −1

3
I . (5)

Dealing with porous media there is a kinematic relation between porosity and volumetric
strain. Let the total volume of some representative elementary volum (REV) be divided
into pore volume and solid volume:

V = VS + VP . (6)

The porosity is defined as the pore volume fraction, i. e. φ = VP/V . Evaluating the mass
balance of the porous medium (incompressible solid phase) yields the porosity evolution

φ̇− φ div(u̇) = tr(ε̇) . (7)

Exploiting div(u̇) ≡ tr(ε̇) = ε̇V and separating the variables, this differential equation
can be solved in a straightforward manner (cf. App.). If the elastic volume changes are
small compared to the plastic ones, the porosity (evolution) can be calculated from εVp
only. Instead of the porosity φ, the pore number e = VP/VS (a. k. a. void ratio) or the
volume ratio v = V/VS can equally be used with the relations

e =
φ

1− φ
with v = 1 + e = (1− φ) 1 . (8)

From (7) and (8) useful differential relations follow as

dφ =
dv

v2
and dεV =

dv

v
. (9)

2In soil mechanics, this would be the effective stress tensor. As the context is clear here, we refrain
from writing σ′. Note also that the continuum mechanical sign convention is used in contrast to the
soil mechanical concepts.
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2.2. System of equations

The following set of equations fully describes the modified Cam clay model. Hooke’s law
is given in a hypoelastic formulation

.
σ = D ··

( .
ε− .

εp
)
. (10)

Then, the modified Cam clay yield function with the parameters M and pc is given by

f := q2 +Mp(p− pc) ≤ 0 . (11)

Here, M is the slope of the critical state line and pc is the so-called pre-consolidation
pressure. An associated flow rule (normality rule) is used to obtain the plastic flow as3

.
εp = Λ̇p n with n =

m

‖m‖
, m =

∂f

∂σ
, (12)

where Λ̇p denotes the plastic multiplier such that dΛp is the plastic increment and n
gives the direction of the plastic flow. The plastic volume change rate is obtained from

ε̇Vp = tr(ε̇
p
) = Λ̇p tr(n) . (13)

The pre-consolidation pressure – the yield stress under isotropic compression – evolves:

ṗc = ε̇Vp ϑ(v) pc with pc
∣∣
t=0

= pc0 . (14)

This way, the pre-consolidation pressure increases in case of plastic compaction, i. e.
ε̇Vp < 0. Moreover, the pre-consolidation pressure remains constant during purely elastic
loading. Furthermore, the parameter ϑ depends on the volume ratio v, which can equally
be expressed by the pore number e or the porosity φ:

ϑ(v) =
v

λ− κ
=

1 + e

λ− κ
=

(8)
=

1

(λ− κ)(1− φ)
= ϑ(φ) , (15)

where the material constants λ, κ (λ > κ) are unit-less. Insertion into Eq. (14) leads to

ṗc = −ε̇Vp
(

1 + e

λ− κ

)
pc . (16)

Finally, a consistent formulation also requires an evolution equation for the hydrostatic
pressure and the elastic volumetric strain [7]:

ṗ = −ε̇Ve
(

1 + e

κ

)
p . (17)

With this, the parameters λ and κ have a well-defined (experimental) meaning: drawing a
semi-logarithmic v− ln p plot, they represent the slope of the virgin normal consolidation
line and the normal swelling line, respectively (cf. subsection 5.1.

With the porosity (or, equivalently, pore number or volume ratio) evolution given by
formula (9), the system of constitutive equations for the Modified Cam Clay Model is
closed. This way, all the basic effects 1.− 4. (cf. section 1) are captured.

3Note that we deviate here from the classical form by means of normalizing the yield function gradient
in stress space. This was done in an effort to maintain consistency in the units, as the MCC yield
function has dimensions of stress squared in contrast to the usual units of stress.
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2.3. Kinematic assumptions and consequences of hypoelasticity

The (modified) Cam clay model was designed in such a way that it fits well-known ex-
perimental findings. One of such is the normal consolidation line (NCL). In experiments
it is often found that the NCL in a semi-log plot can be described by the constant slopes
κ and λ for elastic and plastic loading, respectively. The MCC model, described by the
system of equations given before, can recover this behavior, which will be shown now.

First, in order to solve the differential equation system analytically, an important (and
admissible) simplification is made [15]: The volume ratio evolution is linearized around
the initial value v0. In a geometrically linear setting this means that v ≈ v0. Solving
now (9), the linearized evolution of the volume ratio reads

∆v = v0 ∆εV � 1 . (18)

The evolution equations (16) and (17) now become

ṗ

p
= −

(v0
κ

)
ε̇Ve ,

ṗc
pc

= −
(

v0
λ− κ

)
ε̇Vp . (19)

and can be solved analytically as well. With the relations (1) and (19) the total volume
strain rate reads

ε̇V = ε̇Ve + ε̇Vp =
1

v0

{
κ

(
ṗ

p
− ṗc
pc

)
+ λ

ṗc
pc

}
(20)

Under pure elastic compression ṗc = 0 such that only κ is relevant for the NCL. Under
plastic compression ṗc = ṗ and pc = p holds. Hence, only λ is relevant.

The relation (17) or (19) implies that the elastic bulk modulus becomes a function
of hydrostatic pressure. Assuming Poisson’s ratio ν to be constant,4 the compression,
shear and elasticity modulus read5

K(p) =
v0
κ
p , G(p) =

3(1− 2ν)

2(1 + ν)
K(p) , E(p) = 3(1− 2ν)K(p) . (21)

Consequently, the elasticity tensor in Hooke’s law (2) is not constant, but a function
of hydrostatic pressure (where frequently the hypoelastic formulation (10) is chosen).
The hypoelastic relation (19) for the pressure evolution can be solved analytically using
separation of variables:∫

dp

p
= −v0

κ

∫
dεVe → p = p0 exp

( v0
κ

(
εVe − 0εVe

))
. (22)

Similarly, integration over time steps is also possible:

k+1p = kp exp
( v0

κ

(
k+1εVe − kεVe

))
(23)

No integration of the specific volume is required, cf. assumption above.

4There are other choices possible, e.g. keeping the shear modulus constant (cf. Appendix A.5).
5Of course, Lamé’s constants can be used here as well.
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To obtain the full stress tensor, the remaining deviatoric part needs to be found according
to decomposition (3), i. e.

σ = σD + ( p) I . (24)

However, recalling the hypoelastic formulation, a rate equation must be solved:

.
σD = 2G(p)

.
εDe , (25)

which leads to an incremental determination for the stress deviator. As a much more
simple alternative to a partially incremental scheme, the fully-incremental procedure can
be used integrating the rate-form of Hooke’s law (10) over a time increment∆t = k+1t−kt
while keeping elastic parameters constant:

D(kp) = 2G(kp)J +K(kp) I ⊗ I . (26)

with the fourth-order deviatoric projection tensor J . With this, the stress update reads

k+1σ = kσ +D(kp) :
(
k+1εe − kεe

)
. (27)

Such an implementation thus uses an elastic stiffness evaluation at the previous time
step, which is not fully implicit. However, that also means that the pressure-dependence
does not need to be included in the Jacobian (cf. next section).6

3. Numerical solution

3.1. Total implicit solution scheme

For a time integration with the algorithmic parameter θ ∈ (0, 1], the total values at the
next instant of time are calculated from the current values and the increments, i. e.

εe := k+1εe = kεe + θ∆εe , (28a)

Λp := k+1Λp = kΛp + θ∆Λp , (28b)

pc := k+1pc = kpc + θ∆pc , (28c)

φ := k+1φ = kφ+ θ∆φ , (28d)

The discretized incremental evolution equation now read

∆εp = ∆Λp n , (29a)

∆εVp = ∆Λp tr(n) , (29b)

∆pc = −∆εVp ϑ(φ) pc , (29c)

∆φ = (1− φ)∆εV . (29d)

6There is a slightly-modified hyperelastic version of the MCC model [11], which could be used for a
fully-implicit integration scheme.
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With this, the discretized set of equations has the form

fεe = ∆εe +∆Λp n−∆ε = 0 , (30a)

fΛp = q2 +M2(p2 − p pc) = 0 , (30b)

fpc = ∆pc +∆εVp ϑ(φ) pc = 0 , (30c)

fφ = ∆φ− (1− φ)∆εV = 0 , (30d)

where the total values are the values at the next instant of time, meaning q = k+1q,
p = k+1p. For partial derivatives the functional dependencies are required. They read

fεe = fεe(∆εe, ∆Λp, ∆pc) , (31a)

fΛp = fΛp(∆εe, ∆pc) , (31b)

fpc = fpc(∆εe, ∆Λp, ∆pc, ∆φ) , (31c)

fφ = fφ(∆φ) , (31d)

where it was taken into account, that q(σ), p(σ) and σ(∆εe), n(q, p, pc) and∆εVp (∆Λp, n).
For the solution of the incremental set of equations (30) with the Newton-Raphson

method the partial derivatives with respect to the increments of the unknowns are re-
quired. They read

∂fεe

∂∆εe
= I +∆Λp

∂n

∂∆εe
with I = ea ⊗ eb ⊗ ea ⊗ eb , (32a)

∂fεe

∂∆Λp
= n , (32b)

∂fεe

∂∆pc
= ∆Λp

∂n

∂∆pc
, (32c)

∂fΛp
∂∆εe

=
∂fΛp
∂σ

:
∂σ

∂εe
:
∂εe

∂∆εe
= m : D θ , (32d)

∂fΛp
∂∆pc

=
fΛp
∂pc

∂pc
∂∆pc

= −pM2 θ , (32e)

∂fpc
∂∆εe

=
∂fpc
∂n

:
∂n

∂∆εe
, (32f)

∂fpc
∂∆Λp

=
∂fpc
∂∆εVp

∂∆εVp
∂Λp

= ϑpc tr(n) , (32g)

∂fpc
∂∆pc

= 1 + ϑ∆εVp θ +
∂fpc
∂n

:
∂n

∂∆pc
, (32h)

∂fpc
∂∆φ

= ∆εVp pc
∂ϑ(φ)

∂φ

∂φ

∂∆φ
=

∆εVp pc θ

(λ− κ)(1− φ)2
=
∆εVp pc ϑ θ

(1− φ)
, (32i)

∂fφ
∂∆φ

= 1 + θ∆εV . (32j)
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All other partial derivatives vanish according to the (missing) dependencies (31). Using
the normalized flow direction n, the derivatives with respect to some variable X can be
obtained with the following rule:

∂n

∂X
=

1

m

{
∂m

∂X
− 1

2
n⊗ 1

m

∂m2

∂X

}
with m = ‖m‖ . (33)

Now, the missing expressions in overview (32) can be calculated as

m =
∂f

∂σ
=
∂f

∂q

∂q

∂σ
+
∂f

∂p

∂p

∂σ
= 3σD − M2

3
(2p− pc) I , (34a)

m2 = m : m = 6q2 + M4

3
(2p− pc)2 , n = m/m , (34b)

∂m

∂εe
=

{
∂m

∂q
⊗ ∂q

∂σ
+
∂m

∂p
⊗ ∂p

∂σ

}
:
∂σ

∂εe
=
{

3P + 2
9
M2 I ⊗ I

}
: D , (34c)

∂m2

∂εe
=

{
∂m2

∂q

∂q

∂σ
+
∂m2

∂p

∂p

∂σ

}
:
∂σ

∂εe
=
{

18σD − 4
9
M4(2p− pc) I

}
: D , (34d)

∂n

∂∆εe
=

1

m

{
∂m

∂εe
− 1

2
n⊗ 1

m

∂m2

∂εe

}
:
∂εe

∂∆εe
, (34e)

∂n

∂∆pc
=

1

m

{
∂m

∂pc
− 1

2
n⊗ 1

m

∂m2

∂pc

}
∂pc
∂∆pc

=
M2

3m

{
I +M2(2p− pc)n/m

}
θ , (34f)

∂fpc
∂n

=
fpc
∂∆εVp

∂∆εVp
∂n

= pcϑ ∆Λp I . (34g)

The solution of system (30) can be accomplished based on the Karush-Kuhn-Tucker con-
ditions with an elastic predictor and a plastic corrector step. This leads to a radial return
mapping algorithm (also known as active set search), as will be used in subsection 4.1
and 4.2. Alternatively, the case distinction can be avoided using the Fischer-Burmeister
complementary condition [cf. e. g. 1, 2]. Both methods can be used in MFront [9, 10].

3.2. Numerical refinement and stabilization

It is recommended to normalize all residuals (30) to some similar order of magnitude,
e. g. as strains. For this, equation (30b) can be divided by some characteristic value f̂ :

fΛp = f/f̂ =
{
q2 +M2(p2 − p pc)

}
/(E p̂c) . (35)

Here f̂ = E p̂c = E pc0 was chosen with the elastic modulus and the initial value of the
pre-consolidation pressure as the characteristic pressure p̂c. Of course, this has to be
considered in the corresponding partial derivatives (32d–f). Instead of applying the same
procedure to fpc it is advantageous to directly normalize the corresponding independent
variable pc. Then, the new reduced integration variable is

prc := pc/p̂c = pc/pc0 . (36)
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Thus, the partial derivatives with respect to pc have to be replaced as

∂(∗)
∂pc

→ ∂(∗)
∂prc

=
1

p̂c

∂(∗)
∂pc

. (37)

Consequently, all integration variables εe, Λp, p
r
c, φ are dimensionless, strain-like vari-

ables, which improves the condition number of the set of equations.

It is important to note that the Cam clay model is, in general, only valid for hydrostatic
pressures p < 0, i. e. isotropic tension is not possible because then the elastic parameters
(21) take unphysical values. This is no drawback, but it reflects the nature of the soil
material to be modelled. For the numerical simulation this means, that the possible
trajectories in the stress space are confined to the region with p > 0. For the simulation
to proceed from some initial state, an initial hydrostatic pressure must be present.

In order to stabilize the numerical behaviour two more minor modifications are benefi-
cial. The first one regards some (initial) state with zero stress. Then f = 0 is indicating
potential plastic loading, but plastic flow (12) is undetermined. To prevent this case, a
small (ambient) pressure pamb can be added to the hydrostatic pressure, i. e.

p := I1(σ)/3 + pamb . (38)

Hence, a minimum (initial) elastic range is provided. However, this pressure shift will
cause discrepancies for low pressure values in the in the vicinity of pamb.

Another problem occurs in case of strong softening and dilatancy: pc → 0 and the yield
surface contracts until it degenerates to a single point such that the direction of plastic
flow is undefined. In order to limit the decrease of pc to some minimal pre-consolidation
pressure pmin

c , the evolution equation (14) is modified to

ṗc = ε̇Vp ϑ(φ) (pc − pmin
c ) with pc

∣∣
t=0

= pc0 , (39)

where the normalization from above can be applied again. A reasonably small value for
pmin
c can be the ambient atmospheric pressure or a fixed fraction (e. g. 10 3) of p̂c. The

modifications need to be considered in Eq. (30c) and its derivatives.

3.3. Linear or non-linear porosity evolution

The number of equations in System (30) can be reduced exploiting the minor influence
of the porosity/volume ratio. Two ways are presented here.

3.3.1. Linearized porosity evolution and fully-implicit solution scheme

Since the model is formulated with respect to a geometrically linear setting, the strains
(must) remain small and so do the porosity increments. It is only consequent then, to
linearize the porosity evolution according to formula (18): the volume ratio itself then
follows the linear evolution

k+1v = kv + v0∆ε
V with v

∣∣
t=0

= v0 . (40)
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In all other equations, it is kept constant with v ≈ v0. Consequently, the (minor)
porosity/volume ratio evolution has no effect on any other equation. Thus, the residual
equation (30d) and the corresponding derivatives can be omitted. Moreover, the volume
ratio can be updated at the end of the time step while the integration scheme still is
fully-implicit. The pore number or porosity – if desired – follow directly from

1 + k+1e = k+1v = (1− k+1φ) 1 . (41)

3.3.2. Non-linear porosity evolution and semi-explicit solution scheme

Integrating the non-linear relation (9) between volume ratio and volumetric strain yields
the evolution

k+1v = kv exp(∆εV) . (42)

Equivalently, Eq. (7) for the porosity and the solution (54) derived in Appendix A.3 can
be used. Even if no further linearizing assumption is made, the influence of the volume
ratio change in a time step is minor. Since v usually does not significantly change during
the strain increment, it can be updated explicitly at the end of the time step [5]. Thus,
the residual equation (30d) and the corresponding derivatives can be omitted, again.

3.4. Forcing linear elastic behavior with constant parameters

The evolution equation (17) for the hydrostatic pressure causes a nonlinear hypoelastic
behavior of the MCC model, which has some drawbacks: As a consequence, the com-
pression modulus becomes load-path-dependent. This is thermodynamically inconsistent
with the notion of simple (Cauchy) elasticity [6]. It also seems counter-intuitive that the
bulk modulus should increase with the volume ratio/pore number according to Eq. (21).
For these reasons and for the sake of simplicity, constant elastic parameters can be forced.
This means instead of (17) holds

ṗ = −ε̇Ve K , (43)

which is automatically fulfilled applying linear elasticity with a constant bulk modulus
K. Then, there is no need for the rate formulation (10) and Hooke’s law is given by (2).
Hence, the elastic behavior is hyperelastic and thus also thermodynamically consistent.7

However, keeping the elastic material parameters constant makes the model incon-
sistent at another place: the intrinsic relation between the parameters κ and K is lost.
Instead, these parameters are now independent rendering the model over-parameterized.
Prescribing the elastic constants E, ν and assuming an initial hydrostatic pressure p0,
the normal swelling line slope κ should hence be chosen as

κ = v0
p0
K

= v0 · 3(1− 2ν)
p0
E

= 3
(1− 2ν)

1− φ0
p0
E

. (44)

Nevertheless, the hardening behaviour will be a bit different (cf. subsection 5.1).

7Note that the pressure-dependence of the bulk modulus can be introduced in a hyperelastic setting as
well [11].
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4. Implementation into MFront

4.1. MCC model with constant elasticity

For the MFront implementation the domain specific language (DSL) Implicit was used,
cf. [9, 14]. The coupling to OpenGeoSys [12, 3] is done using MGIS [10]. The implemen-
tation is part of the OpenGeoSys source code, cf. https://gitlab.opengeosys.org.

In the preamble of the MFront code the parameters are specified and integration vari-
ables are declared. Note that a state variable is a persistent variable and an integration
variable, whereas an auxiliary state variable is also persistent but no integration variable.

// environmenta l parameters ( d e f a u l t v a l u e s )
@Parameter s t r e s s pamb = 1e +3; //Pa
@PhysicalBounds pamb in [ 0 : ∗ [ ;
pamb . setEntryName ( ” AmbientPressure ” ) ;

// m a t e r i a l parameters
@MaterialProperty s t r e s s young ;
@PhysicalBounds young in [ 0 : ∗ [ ;
young . setGlossaryName ( ”YoungModulus” ) ;
. . .
// s t a t e v a r i a b l e s ( b e s i d e e e l ) :
@StateVariable r e a l lp ;
lp . setGlossaryName ( ” E q u i v a l e n t P l a s t i c S t r a i n ” ) ;
@Integrat ionVar iab l e s t r a i n rpc ;
@Auxi l i a ryStateVar iab le s t r e s s pc ;
pc . setEntryName ( ” PreConso l idat ionPres sure ” ) ;
@Auxi l i a ryStateVar iab le r e a l epl V ;
epl V . setEntryName ( ” P la s t i cVo lumet r i cS t r a in ” ) ;
@Auxi l i a ryStateVar iab le r e a l v ;
v . setEntryName ( ”VolumeRatio” ) ;
. . .

The semi-explicit solution scheme is then implemented with three basic steps:

@In i tLoca lVar iab l e s {
// e l a s t i c p r e d i c t o r s t e p

}
@Integrator {

// p l a s t i c c o r r e c t o r s t e p
}
@UpdateAuxi l iaryStateVar iables {

// e x p l i c i t volume r a t i o update
}

Note that for a consistent initial state of the material integration, the initial elastic
strain has to be calculated from the given initial stress at the beginning of the simulation.
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4.2. MCC model with original non-linear elasticity

In contrast to the absolute formulation presented above, an incremental formulation
yields the most compact implementation in case of nonlinear (hypo)elasticity. The def-
inition of parameters and state variables is just as above, with the only difference that
there is no Young modulus to be defined and no (numerical) ambient pressure is used
(cf. subsection 3.2). The solution scheme has two more incredients before and after the
plastic corrector step:

. . .
@ComputeStress {

// incrementa l s t r e s s update
s i g = s i g 0 + theta ∗ d s i g d e e l ∗ dee l ;

}
@Integrator {

// p l a s t i c c o r r e c t o r s t e p
. . .

}
@ComputeFinalStress {

// updat ing the s t r e s s at the end o f the time s t e p
s i g = s i g 0 + d s i g d e e l ∗ dee l ;

}
. . .

Notably, the calculation of the Jacobian during the plastic corrector step does not change
in case of using Eq. (26), i. e. taking the previous pressure for calculating the elastic
parameters. In addition to the steps already mentioned, the tangent operator has to be
specified according to

@TangentOperator // because no Brick S t a n d a r d E l a s t i c i t y
{

i f ( ( smt == ELASTIC) | | ( smt == SECANTOPERATOR) )
{

Dt = d s i g d e e l ;
}
. . .

}
Additional convergence checks can be used for excluding unphysical behavior, e. g. neg-
ative plastic increments. For the implementation to work properly, the initial state must
be characterized by p > 0 (cf. subsection 3.2).8 Otherwise, the following error message
will occur:

ModCamClay semiExplParaInitNLnu inc : : i n t e g r a t e ( ) : computFdF
returned fa l se or the norm o f the r e s i d u a l i s not f i n i t e

8Using mtest, it is not sufficient to define the loading program such that p > 0, also the corresponding
initial stress with p > 0 has to be set explicitly with the setStress() method.
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5. Numerical studies

5.1. Isotropic compression and consolidation line test using mtest

MFront provides the tool mtest for testing the implemented material behaviour at a
single material point (integration point), see [9]. For this, complex loading sequences
can be prescribed in terms of stress and strain trajectories.

There is a significant difference between the original Modified Cam Clay model (sub-
section 4.2) and the MCC version with constant elastic parameters (subsection 4.1). In
order to work this out, the models‘ behavior under isotropic compression is compared.
As a result, the normal consolidation line (NCL) is obtained. For the original MCC
model there is an analytical solution: in the semi-log plot the v – p curve consists of
straight lines with the slopes λ (virgin consolidation line) and κ (swelling line). This
will be derived now.

The original MCC evolution equations for the pressure and the pre-consolidation pres-
sure (19) can be integrated easily by separation of variables. Assuming zero initial volume
strains and the initial values p0 and pc0, we get the expressions

εVe = −
(
κ

v0

)
ln

(
p

p0

)
, εVe = −

(
λ− κ
v0

)
ln

(
pc
pc0

)
. (45)

With the additive composition of the total volumetric strain, i. e. εV = εVe +εVp and with

the linear kinematic relation v − v0 = v0ε
V we finally get

v = v0 − κ ln

(
p

p0

)
− (λ− κ) ln

(
pc
pc0

)
. (46)

This is an analytical solution holding for small changes of the volume ratio, i.e. v ≈ v0.
Now, monotonic loading is considered for a stress-controlled isotropic compression test.
Starting from the state (p0, v0) with

p = p0, pc = pc0 → v = v0 (47)

the pressure is increased monotonically and the behavior is elastic until reaching the
pre-consolidation pressure (the yield stress under isotropic compression) when

p = pc0, pc = pc0 → v = v0 − κ ln

(
pc0
p0

)
. (48)

Further increasing the pressure in the elastic-plastic region up to some end value p =
pE > pc0, the final state is

p = pE, pc = pE → v = v0 − κ ln

(
pE
p0

)
− (λ− κ) ln

(
pE
pc0

)
. (49)

Between these points, the solution is a straight line in the semi-log space. To be precise,
we choose p0 = pc0/4, pE = 2pc0 yielding the initial over-consolidation ratio pc0/p0 = 4.
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Table 1: Material parameters and initial values for the modified Cam clay model

ν M λ κ v0 pc0 / Pa

0.3 1.2 7.7·10 2 6.6·10 3 1.7857 200 · 103

The material parameters are given in Table 1. In order to make the MCC models with
pressure-dependent elasticity (Original) and with constant elastic parameters initially
consistent, E cannot be chosen arbitrarily in 4.1, but according to Eq. (44), i. e.

E = 3(1− 2ν)K = v0 · 3(1− 2ν)
p0
κ

= 3
(1− 2ν)

(1− φ0)
p0
κ
. (50)

Furthermore, no ambient pressure is used, cf. subsection 3.2.

1026 × 101 2 × 102 3 × 102 4 × 102

p / kPa

1.70

1.72

1.74

1.76

1.78

v

Isotropic compression test with OCR=4

analytical solution: normal consolidation line
numerical solution: MCC constant elastic parameters
numerical solution: MCC pressure-dependent elasticity incrementel

Figure 1: Normal consolidation line: analytical and numerical solution for the original
MCC model (pressure-dependent elasticity) versus numerical solution with the
basic version (constant elastic parameters). Note the logarithmic p-axis.

Figure 1 shows the perfect fit of analytical and numerical solution for the original
MCC model 4.2 with pressure-dependent elastic parameters. However, the version 4.1
with constant elastic parameters (cf. subsection 3.4) significantly deviates. Hence, the
basic version should not be used for this kind of test (if the typical Cam clay behavior
is expected). Instead, the basic version can be used very well if stress paths with high
deviatoric proportion are present (cf. triaxial test in subsection 5.5).
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5.2. Consolidated plane strain simple shear test using mtest

In order to test the consolidation behaviour, plane strain simple shear tests were con-
ducted with the same initial state but three different loading trajectories. To be precise,
first the hydrostatic pressure p was increased until 0.25 pc0, 0.5 pc0 or 0.75 pc0. This re-
sults in the overconsolidation ratios (OCR = pc0/p) of 4, 2, 4/3. From this hydrostatic
stress state, shear is applied up to the strain εxy = 0.01.

Table 2: Material parameters for the modified Cam clay model implementation 4.1

E / Pa ν M λ κ v0 pc0 / Pa pamb / Pa

150 · 109 0.3 1.5 7.7·10 3 6.6·10 4 1.788 30 · 106 0 · 103

Implementation 4.1 is used, material parameters and initial values are given in Table 2.
Note that only the difference λ−κ plays a role in the implementation with constant elastic
parameters. Considering the OCR, there are three different cases (cf. Figure 2): For
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M
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%
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OCR=1.33

Figure 2: Consolidated shear test for three typical OCR values: εVp > 0 causes softening,

whereas εVp < 0 (compaction) results in hardening.

OCR > 2 the shearing is accompanied by a plastic expansion (dilatancy) with εVp > 0,
which is related to softening until the critical state is reached.

For OCR = 2 shearing until yield leads directly to the critical state. Considering the
state of the soil (porosity, stress, volume) this is a natural asymptotic state. Further
shearing does not alter that state anymore. Hence, there is ideal plastic behaviour.

For OCR < 2 the shearing is accompanied by a plastic compaction (contractant flow,
consolidation) with εVp < 0, which is related to hardening until the critical state is
reached.
The stress trajectories, and the final yield surfaces are illustrated in the p, q-space to-
gether with the initial yield surface and the critical state line (CSL).
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Figure 3: Consolidated shear test for 3 typical OCR values: depicted are the different
stress trajectories, the critical state line (CSL) and the final yield surfaces.

Now, the same consolidated shear loading is applied, but with two different initial states:
a high initial pre-consolidation pressure pc0 resembles a heavily pre-consolidated, com-
pacted (dense) soil material, whereas a low value of pc0 resembles a loosened initial state.
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Figure 4: Consolidated shear test for two different initial pre-consolidation pressures:
the CSL and the final state including the final yield surface are equal.
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As can be seen in Figure 4 the materials strive to the same (asymptotic) critical state,
since the CSL is identical. However, this is either accomplished by hardening (contrac-
tion) or softening (dilatancy).

5.3. Plane strain simple shear test with one FE using OpenGeoSys

As a next step the shear test from the previous section was repeated using OpenGeoSys
and model 4.1, but without consolidation phase. A unit square domain was meshed
with only one finite element. At the boundaries (top, bottom, left, right) Dirichlet
boundary conditions (BCs) were prescribed. The top boundary was loaded by a linear
displacement ramp from time 0 to 1 s. The material parameters were taken from Table 2
with only one difference: As the test has no pre-consolidation phase, it starts from zero
stress and due to the reasons explained in subsection 3.2 some small ambient pressure
pamb = 103 Pa was added.9

Test BC left BC right BC top BC bottom behaviour

Shear xy free free ux = −vt, uy = 0 ux = uy = 0 convergence
Shear xy free free ux = −vt ux = uy = 0 no convergence

Table 3: Convergence behaviour for different BCs, v = 0.05 m/s, t is the time.

Figure 5: Test results for different BCs according to Table 3: the top boundary is either
confined (left) or free (right).

In order to have true simple shear, the top BC uy = 0 has to be applied. Else there
is a tilting effect, and the deformation consists of shear and bending. As this is related
to some parts with dominant tension stresses, convergence cannot be achieved with the
Cam clay model (cf. next section). Note also that for pure shear εV = 0 and the volume
and porosity thus remain constant.

9If the test is stress-controlled and the material is initially on the critical state with zero stress, this
causes an infinite strain increment and no convergence can be expected.
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5.4. Plane strain simple biaxial test with one FE using OpenGeoSys

It must be noted that the Cam clay model is primarily intended to capture the shear
behaviour of soil materials without tensile strength. Hence, the uniaxial stress states with
free boundaries cannot be sustained just as these states cannot be reached in reality. As
an example, uniaxial tension causes pronounced lateral stretching due to plastic volume
increase (dilatancy). The application of some minimal pre-consolidation pressure can
help to stabilize the simulation, but convergence cannot be expected in general.

Still, the biaxial tension/compression behaviour can be simulated to a certain de-
gree. Material parameters and setup are the same as in the previous section. Table 4
shows under which conditions convergence can be expected. In the converged cases a
homogeneous solution was obtained as expected.

No Test BC left BC right BC top BC bottom convergence

1 Uniax. compr. y ux = 0 free uy = −vt uy = 0 no
2 Uniax. tension y ux = 0 free uy = +vt uy = 0 no
3 Biaxial compr. x, y ux = 0 ux = −vt uy = −vt uy = 0 yes
4 Biaxial tension x, y ux = 0 ux = +vt uy = +vt uy = 0 (yes)
5 Biaxial mixed x, y ux = 0 ux = +vt uy = −vt uy = 0 yes
6 Biaxial mixed x, y ux = 0 ux = −vt uy = +vt uy = 0 yes

Table 4: Convergence behaviour for different biaxial loadings and BCs, v = 0.05 m/s.

It is interesting to note that the biaxial tension test can be simulated with the Cam
clay model. In order to achieve convergence the drop of the pre-consolidation pressure
has to be limited. For this, either the value of the parameter difference λ−κ is increased
or some minimal value pmin

c has to be ensured according to Eq. (39).

Figure 6: Biaxial test results for different BCs: shown are the mixed cases from Table 4,
left) test number 5 and right) test number 6.
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5.5. Axially-symmetric triaxial compression test

As a benchmark to existing results an axially-symmetric triaxial compression test was
performed. For this, a cylindrical domain of height 100 m and radius 25 m is meshed with
100× 25 finite elements. At the left and bottom boundaries symmetry BCs of Dirichlet
type are prescribed. The top and right boundaries are loaded by prescribing an axial and
a confining pressure pcon, respectively. The loading starts from a hydrostatic stress state
with p0 = pcon = pc0 (normally consolidated, i. e. OCR=1). Then the axial pressure is
increased while the confining pressure pcon is held constant. As the simulation time is
irrelevant, it is again set to 1 s. The material parameters are taken from Table 1 and the
same settings are applied in order to compare the original Modified Cam Clay model
4.2 and the implementation with constant elastic parameters 4.1. According to Eq. (44)
the (initial) Young’s modulus is thus

E0 = 3(1− 2ν)
v0
κ
pc0 = 64.9345 MPa ,

which is a reasonable value. The displacement field is illustrated in Figure 7.

Figure 7: Triaxial benchmark results: shown are the displacement coefficients in the
radial (here x) direction, left implementation 4.1 and right 4.2.
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Since the stress and strain fields are homogeneous, it is sufficient to further analyze
the solution at some arbitrary integration point. The material and loading parameters
were chosen such that the stress trajectory approaches the CSL from the right side but
does not meet it (cf. Figure 10). Otherwise there will be zero resistance to plastic flow
causing an infinite strain increment in the stress-controlled test and no convergence can
be expected. The tendency can already be seen in Figure 8/9 (right) with the steep
increase of the equivalent plastic strain. The curve of the pre-consolidation pressure (cf.
Figure 8/9 left) shows monotonic hardening related to plastic compaction (cf. plastic
volumetric strain in Figure 8/9 right).

Figure 8: Triaxial benchmark results using implementation 4.1: shown is the evolution
of stress (left, unit Pa) and strain measures (right) at some integration point.

Figure 9: Triaxial benchmark results using implementation 4.2: shown is the evolution
of stress (left, unit Pa) and strain measures (right) at some integration point.

Comparing Figure 8 with Figure 9 it can be seen that the solutions are not identical but
close to each other, showing the applicability of the implementation 4.1 for this kind of
test. The reason is the pronounced deviatoric stress component – in contrast to the pure
isotropic compression test (cf. subsection 5.1).

In order to check the accuracy of the numerical results, they were compared to an
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Figure 10: Triaxial benchmark results using implementation 4.1: depicted is the stress
trajectory and the evolving yield surface as well as the CSL.

analytical solution [15] for proportional loading (cf. Appendix A.4). For this, the straight
stress path starting from (p, q) = (pc0, 0) until the final state (p, q) = (387387, 330129) Pa
is considered (cf. Figure 10). Plotting the von-Mises stress over the corresponding
equivalent strain defined by ε2q = 2

3 ε
D ·· εD shows the agreement between numerical and

analytical solution.
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Figure 11: Triaxial benchmark results using implementation 4.1: depicted are the strains
(left) and a comparison between analytical and numerical solution (right).

Using the implementation 4.1, minor deviations arise from the assumption of a constant
bulk modulus according to Eq. (43) (cf. Figure 11 right). The original implementation
4.2 using the pressure-dependent bulk modulus according to Eq. (21), on the other hand,
shows perfect agreement with the analytical solution (cf. Figure 12 right).
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Figure 12: Triaxial benchmark results using implementation 4.2: depicted are the strains
(left) and a comparison between analytical and numerical solution (right).

Considering the radial and circumferential strains another peculiarity is found (cf. Fig-
ure 11): The initial plastic compaction causes lateral (i. e. radial and circumferential)
contraction. However, with increasing axial compression this necessarily turns into ex-
pansion. Note also that for this numerical test the magnitude of the strains is beyond
the scope of the linear strain measure.

As an alternative, the test could also be conducted displacement-controlled. However,
in doing so it was found that the homogeneous solution becomes unstable and strain
localization occurs at the top of the domain. Apparently, at some integration points
softening sets in even though the homogeneous solution only shows monotonic harden-
ing. Varying the mesh size and topology, convergence could be achieved in some cases,
indicating a strong mesh dependency.

6. Concluding remarks

The presented Cam clay material model has a simple structure, but can capture several
characteristic phenomena of soil materials very well. However, it must be considered
with caution when applied to realistic finite element simulations. The major limitations
have two origins: first, the missing cohesion and second, the dilatant/softening part of
the captured material behaviour. The provided numerical refinements can stabilize this
only to a limited degree. It seems that the softening can cause a pronounced strain
localization, which requires special strategies for regularization of the underlying ill-
posed mathematical problem [cf. e. g. 13]. In order to include finite cohesion different
modifications of the Cam clay model have been proposed [cf. e. g. 8]. Finally, mechanical
loading in the vicinity of the critical state can easily cause large deformations, a finite
strain formulation should be considered in the future [cf. e. g. 6, 7].
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A. Appendix

A.1. Numerical convergence behavior of the basic Modified Cam clay
implementation

In order to check the convergence rate of the Cam clay implementation 4.1 the consoli-
dated shear test from Section 5.2 was considered again. The parameters were taken from
Table 2. The hydrostatic pressure p was increased until 0.66 pc0 resulting in an OCR of
1.5. From this hydrostatic stress state, shear is applied up to the strain εxy = 5 · 10−4

within 20 time steps.
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Figure 13: Convergence plot: depicted is the norm of the residuals from the global it-
eration (colored) and the local iteration (grey) using the modified Cam clay
MFront implementation 4.1 and mtest. Within the first 12 steps the behavior
is purely elastic (top), followed by contractant plastic flow (bottom).

As can be seen in Figure 13, convergence is achieved in one step in the elastic stage
(top). In the plastic stage (bottom), the typical acceleration of convergence when ap-
proaching the solution is observed (asymptotic quadratic convergence). However, the
convergence depends on the plastic flow behavior dictated by the parameters M , λ κ
and pc0 and can reduce to super-linear (order ∈ [1, 2]).

A.2. Orthotropic modified Cam clay model implementation

Implementation 4.1 of the modified Cam clay model can be extended to orthotropic
elastic behavior using the so-called standard bricks within MFront. Thus just one line
of code need to be added:

@Brick S ta n d a r d E l a s t i c i t y ;
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@OrthotropicBehaviour<Pipe>;

As a consequence the nine independent constants of orthotropic elasticity are already
declared.

// m a t e r i a l parameters
// Note : YoungModulus and PoissonRatio d e f i n e d as parameters
// Note : Glossary names are a l r e a d y g iven ; entry names are newly d e f i n e d
@MaterialProperty r e a l M;
@PhysicalBounds M in [ 0 : ∗ [ ;
M. setEntryName ( ” C r i t i c a l S t a t e L i n e S l o p e ” ) ;
. . .

Since for Implementation 4.2 the standard elasticity brick could not be used, more
effort is required for the extension to orthotropic elasticity.

In any case, from the physical point of view it might be more realistic to consider the
anisotropy both for the elastic and plastic behavior.

A.3. Analytical expressions for porosity and pre-consolidation pressure
evolution

Given is the evolution equation for the porosity:

φ̇− φ div(u̇) = tr(ε̇) with εV = tr(ε) . (51)

Exploiting div(u̇) ≡ tr(ε̇) and separating the variables yields the form

dφ

1− φ
= dεV . (52)

Integration over some time increment ∆t with φ(t) = kφ and φ(t + ∆t) = k+1φ as well
as ∆εV = k+1εV − kεV as the volumetric strain increment, i. e.

k+1φ∫
kφ

dφ

1− φ
=

k+1εV∫
kεV

dεV . (53)

then results in the incremental solution

1− k+1φ = (1− kφ) exp( ∆εV) . (54)

Integration over the whole process time span with the initial values φ(t = 0) = 0φ and
εV(t = 0) = 0 results in

1− φ = (1− 0φ) exp( εV) . (55)

Combining (55) with (14) finally yields the evolution of the pre-consolidation pressure:

ṗc = −
ε̇Vp pc

(λ− κ)(1− 0φ) exp( εV)
≡ v0

(λ− κ)
exp(εV) ε̇Vp pc . (56)
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However, this equation is difficult to solve analytically. Therefore, and for the reasons
explained in subsection 3.3, the volume ratio is assumed almost constant as in Eq. (19).
Including the minimum value according to Eq. (39), solving by separation of variables
and integrating incrementally it is obtained

k+1pc =
(
kpc − pmin

c

)
exp

(
v0

λ− κ

(
k+1εVp − kεVp

))
+ pmin

c . (57)

This analytical relation offers the possibility to eliminate the integration variable pc com-
pletely and thus also the residual function fpc . Of course, this has to be considered in
the corresponding partial derivatives (32d–f). In a similar way, the analytical Solution
(23) for the pressure evolution can be used. Such an implementation requires the conse-
quent split of deviatoric and hydrostatic parts of the stress tensor, which also has to be
considered in the partial derivatives. A (first) version of such an implementation called
ModCamClay semiExpl absP.mfront was added to OpenGeoSys.

A.4. Analytical solution of the Cam clay model for proportional loading

A straight stress path from (p, q) = (0, pc0) until the final state (p, q) = (387387, 330129) Pa
is considered:

q = k (p− pc0) . (58)

The analytical solution [15] for the corresponding equivalent strain ε2q = 2
3 ε

D ·· εD reads

εq = εeq + εpq (59)

and to be precise, using the abbreviations C = (λ κ) and α = 3(1− 2ν)/(2(1 + ν)) it is

v0 ε
e
q = ln

[(
1− q

kp

) 2Ck
k2−M2−

κk
3α

]
, (60)

v0 ε
p
q = ln

[(
1− q

Mp

) Ck
M(M−k)

·
(

1 +
q

Mp

) Ck
M(M+k)

]
− 2

C

M
arctan

(
q

Mp

)
. (61)

A.5. Analytical considerations on pressure-dependent hypoelasticity

Hypoelastic behavior with a pressure-dependent bulk modulus is considered. As pointed
out before, there are two choices of which elastic parameter to keep constant (for
isotropy):

1. Assuming Poisson’s ratio ν to be constant results in G(p) (pressure dependent
shear behavior).

2. Assuming the shear modulus G constant results in a pressure dependent ν.

For the first choice, the pressure-dependent elastic parameters read

K(v, p) =
v

κ
p , G(v, p) =

3(1− 2ν)

2(1 + ν)
K(v, p) = α(ν)K(v, p) . (62)
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Assuming the volume ratio almost constant (cf. subsection 3.3) the dependency v(εV)
can be ignored such that there is onlyK(p), G(p). This facilitates the following derivation
without changing the results significantly. Then, the elastic stiffness tensor is not equal
to the elasticity tensor anymore but has the form

∂σ

∂εe
= 2GJ + 2εDe ⊗

∂G

∂p

∂p

∂εVe

εVe
∂εe
− I ⊗ ∂p

∂εVe

εVe
∂εe

(63)

= 2GJ − 2
v0
κ
α(ν)K εDe ⊗ I −K I ⊗ I

= 2G
{
J − v0

κ
εDe ⊗ I

}
−K I ⊗ I , (64)

where it was used that ∂p/∂εVe = −K and G = α(ν)K. Obviously, there is a one-sided
pressure→shear-coupling due to the pressure-dependent shear modulus. For this reason,
major symmetry is lost. From the thermodynamic point of view this is a consequence
of the hypoelastic approach where no strain energy potential exists. Further note that
an unsymmetric stiffness tensor implies energy sinks or sources.

As an alternative, it is possible to keep the shear modulus G constant. Then, ∂G/∂p =
0 and there is no (spurious) pressure→shear-coupling. Moreover, the elastic stiffness
tensor is symmetric and a convex strain energy potential now exists. However, Poisson’s
ratio implicitly becomes a function of the pressure because

K(p) =
v0
κ
p , ν(p) =

3K − 2G

2(3K +G)
(65)

and it must be ensured, that ν does not become negative for very small pressures (and
thus low values of K). The hypoelastic relation (17) for the pressure evolution can be
solved analytically as shown in Section 2.3. With this calculation of the hydrostatic
pressure the stress tensor is composed to

σ = 2G εDe + ( p) I . (66)

It is important to note that the pressure dependence of the compression modulus is
only reasonable for p > 0 such that K > 0. Moreover, a minimum value of K must be
guaranteed for numerical stability. Hence, it could be used

p
?
< p0 ↔

(
εVe − 0εVe

)
> 0 : K =

v

κ
p0 = const. (67)

Note that this version of the MCC model is not implemented in OpenGeoSys yet.
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