A benchmark of a viscoelastic(LUBBY2) model

The LUBBY2 model is based on the generalised Burgers model and is described by the following evolution
equation [1]:
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where o is the deviatoric stress, € is the deviatoric strain, and e is the volume strain. The viscosities
and the Kelvin shear modulus of the Lubby2 formulation are functions of the current stress state
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where m, are material parameters characterising the stress dependency.
The rheological model is shown in Fig. 1 consisting of a Maxwell element in series with a Kelvin element.
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Figure 1: Rheological analogue of the LUBBY2 model.

The state vector z = (O'DT, et eﬁT) , which contains unknowns, are solved by using the Newton-Raphson
method with the residual vector of
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and the 18 x 18 Jacobian:



Figure 2: Loading and boundary conditions.

Table 1: Material properties used in the LUBBY2 model

Gmo / MPa Ky / MPa myo / (MPas)  Gko / MPa ko / (MPas)  my ma mq
0.8 0.8 0.5 0.8 0.5 -0.3 —-0.2 -0.2
or Jii Ji2 Ji3
i Jor J22 Jos (7)
J31 J32 Js3
where the components are given as follows:
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The mechanical model is a square plate/cube with a positive shear stress of 0.01 MPa applied on the
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Figure 3: Variation of the shear strain with time (a) and the deviation between analytical solution and
numerical simulations (b).



