
A benchmark of a viscoelastic(LUBBY2) model
The LUBBY2 model is based on the generalised Burgers model and is described by the following evolution
equation [1]:
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where σD is the deviatoric stress, ϵD is the deviatoric strain, and e is the volume strain. The viscosities
and the Kelvin shear modulus of the Lubby2 formulation are functions of the current stress state
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where ma are material parameters characterising the stress dependency.
The rheological model is shown in Fig. 1 consisting of a Maxwell element in series with a Kelvin element.

Figure 1: Rheological analogue of the LUBBY2 model.

The state vector z =
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, which contains unknowns, are solved by using the Newton-Raphson

method with the residual vector of
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and the 18 × 18 Jacobian:
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Figure 2: Loading and boundary conditions.

Table 1: Material properties used in the LUBBY2 model

GM0 / MPa KM0 / MPa ηM0 / (MPa s) GK0 / MPa ηK0 / (MPa s) m1 m2 mG
0.8 0.8 0.5 0.8 0.5 −0.3 −0.2 −0.2
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where the components are given as follows:
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The mechanical model is a square plate/cube with a positive shear stress of 0.01 MPa applied on the
top side/surface, see Fig. 2. Displacements of the left, right side and the top are constrained in vertical
direction. The material property set for this benchmark is listed in Table 1.
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(a) ϵxy (b) deviation

Figure 3: Variation of the shear strain with time (a) and the deviation between analytical solution and
numerical simulations (b).
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