One-sided incompressibility constraint for fracture models

Thomas Nagel

September 28, 2017

We're concerned here with the fracture closure treatment in our enriched FE implementation (LIE) governed by a fracture normal stiffness K_n :

$$\boldsymbol{\sigma}_{\mathrm{n}} = K_{\mathrm{n}} [\![\mathbf{u}]\!] \cdot \mathbf{n}_{\mathrm{F}} \tag{1}$$

This normal stiffness acts as a proportionality factor between the normal stress transmitted across the fracture and the displacement jump across the fracture, i.e. the relative normal displacement of the two opposing fracture surfaces.

Given a sufficiently high normal traction σ_n , the displacement jump $w_n = [\![\mathbf{u}]\!] \cdot \mathbf{n}_F$ will increase (in absolute value) linearly given a constant normal stiffness. This will lead to cases where the current aperture given by

$$b = b_0 + w_n \tag{2}$$

attains physically inadmissible values of b < 0, i.e. negative fracture apertures.

Several remedies exist for this case (Belytschko, Moës, et al., 2001; Belytschko, Gracie, et al., 2009) that can involve the introduction of Lagrange multipliers as additional unknowns or Dirichlet-like modifications of the linear system. Here, we choose a simple approach motivated by the constitutive treatment of one-sided incompressible materials (Ehlers et al., 1999). In essence, the normal stiffness is modified by a factor that is one in the initial state ($b = b_0$) and increases towards infinity as $b \rightarrow 0$, thus making the fracture increasingly incompressible in the normal direction. Specifically we chose the formulation:

$$K_{\rm n} = K_{\rm n}^0 \left[1 + \ln^2 \left(\frac{b}{b_0} \right) \right] \tag{3}$$

As intended, $K_n(b = b_0) = K_n^0$, where K_n^0 is the initial normal stiffness specified in the project file. Furthermore,

$$\lim_{b \to 0} K_{\rm n} = \infty \tag{4}$$

In other words, compression is increasingly penalized as the fracture aperture approaches zero. This formulation is only activated in compression, strictly convex, its derivative is continuous with a value of one at the origin ($w_n = 0$, or equivalently $b = b_0$) and it is controlled by the keyword penalty_aperture_cutoff in the fracture constitutive model section of the project file. The value b^{cutoff} assigned to this keyword ensures the non-negativity of the argument assigned to the logarithm should the iterative scheme yield a negative aperture. It enters the constitutive equations where we made the assumption that stiffness increases linearly, not logarithmically, if the aperture is below this cutoff value:

$$K_{\rm n}^{\rm lin} = K_{\rm n}|_{b^{\rm cutoff}} + \left. \frac{\partial K_{\rm n}}{\partial b} \right|_{b^{\rm cutoff}} (b - b^{\rm cutoff})$$
(5)

The transition between Eq. (3) and Eq. (5) is smooth.

Note that invoking this formulation turns Eq. (1) into a quasi-linear formulation. The additional constitutive non-linearity has to be accounted for by, e.g., allowing more non-linear iterations.

If $b^{\text{cutoff}} = b_0$, then a standard model with $K_n = K_n^0$ is invoked. In summary:

$$K_{n} = \begin{cases} K_{n}^{0} \left[1 + \ln^{2} \left(\frac{b}{b_{0}} \right) \right] & b^{\text{cutoff}} < b < b_{0} \\ K_{n}^{0} \left[1 + \ln^{2} \left(\frac{b^{\text{cutoff}}}{b_{0}} \right) + \frac{2 \ln \left(\frac{b^{\text{cutoff}}}{b_{0}} \right)}{b^{\text{cutoff}}} (b - b^{\text{cutoff}}) \right] & b \le b^{\text{cutoff}} \end{cases}$$
(6)

References

Belytschko, Ted, Nicolas Moës, et al. (2001). "Arbitrary discontinuities in finite elements". In: *International Journal for Numerical Methods in Engineering* 50.4, pp. 993–1013. Belytschko, Ted, Robert Gracie, and Giulio Ventura (2009). "A review of extended/generalized

finite element methods for material modeling". In: *Modelling and Simulation in Materials Science and Engineering* 17.4, p. 043001.

Ehlers, W. and G. Eipper (1999). "Finite Elastic Deformations in Liquid-Saturated and Empty Porous Solids". In: *Transport in Porous Media* 34.1, pp. 179–191.