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Abstract

Underground usage for energy storage or nuclear waste disposal is becoming important. In doing
so, barrier rock integrity needs to be ensured. Mechanical integrity of barrier rock is studied both
experimentally and numerically.

Nomenclature

f Traction vector

ψ Strain energy

1. Introduction

Geomechanical integrity is evaluated.

2. Fluid percolation (hydraulic fracturing) experiments on rock salt

For comparison with numerical models, we used published experiments on pressure driven per-
colation (hydraulic fracturing) [21]. The experiments were conducted in salt stone to study stress
dependent hydraulic fracture propagation.

Cubic samples with 100 mm edge length were prepared with a borehole in the upper middle
boundary (Fig. 1(a)). The samples were loaded with with a true-triaxial apparatus and pressurized
fluid was injected through a borehole drilled in the middle of the sample to induce hydraulic fracture
(Fig. 1(b)). The depth of and the diameter of the hole are 50 mm and 20 mm respectively. The
drilled hole was cased off to a depth of 40 mm leaving a 10 mm open section in the bottom for fluid
entry to the sample.

Two different stress states were applied to the samples. The first case is a reverse faulting in
Adersonian stress state [5] (Fig. 2(a)) and the resulting crack patterns are shown in Figs. 2(a) and
2(b). During injection of the fluid, the flow rate was kept constant and the pressure responses were
recorded. Figs. 3(a) and 3(b) show evolution of the pressures.
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(a) Schematic of the experiment (b) Configuration inside the true tri-axial
apparatus

Figure 1: Pressure-driven fluid percolation experiment in rock salt in [21]

(a) Reverse faulting stress configuration (b) Normal faulting stress configuration

Figure 2: The confining stress configurations in salt stone [21]
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(a) Result from 2(a)

(b) Result from 2(b)

Figure 3: The borehole pressure evolution under constant flow rate sequels [21]
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3. Model approach

Static equilibrium in the absence of body forces and continuity of stress under the presence of
crack set Γ is given by: 

∇ · σ(u) = 0 in Ω \ Γ,

σ · n = t on ∂ΩN,

u = u0 on ∂ΩD,

σ± · nΓ± = −pnΓ± on Γ±.

(1)

3.1. Discrete element model

3.2. Lattice element model

The application of discrete lattice element in modeling the fracture initiation and propagation
in geomaterials is well established [28, 36, 46]. The main advantage of LEM is to model the stress
redistribution and concentration upon the fracking process. The application of LEM is extended
recently to model the heat transfer in cemented geomaterials [42] as well as granular particles [38].
The thermo-mechanical lattice model based on the integration of the interface element is able to
model extension and shrinkage processes during heating and cooling processes [41]. The LEM is
also extended to model the foam concrete behavior under dynamic loading [40]. In the recent
decade, the dual lattice model to simulate the coupled hydro-mechanical loadings is geomaterials
is developed [16]. In these models, the additional mesh grid for transportation of hydraulic flow is
considered. The short description of the implemented coupled thermo-hydro-mechanical lattice is
given below.

3.2.1. Discretization of the domain

The domain is discretized into a series of Voronoi cells which represent the particle or continuum
depending on the domain boundary condition. With the application of the Vectorized random lattice
(VRL), the irregularity factor known as the randomness factor (), which varies between 0 and 1 is
introduced [33]. When the randomness factor is 0, the generated mesh is regular and when it is
equal to 1, it reaches the maximum irregularity for VRL model. Afterward, the Voronoi Tesselation
is implemented and the continuum or particle boundaries are defined. The Delaunay Triangulation
results in the Voronoi cell connectivity which will be considered as bond lattice elements between
each node.

3.2.2. Mechanical lattice model

The mechanical lattice model is based on the assumption of linear elastic fracture mechanics
and, where mode I and II fracture mechanisms are considered. The simulation of fracture in LEM
is based on the removal of the bond elements between Voronoi cells [37]. The elements strength
threshold can be defined based on critical strain energy or fracture toughness for Mode I and II. In a
different approach, the strength threshold is defined based on Mohr-Coulombs tension cutoff model
[6]. The lattice elements can be represented by a spring (1DOF), Euler-Bernoulli beam (3DOF)
or Timoshenko beam elements (4DOF). The regularization of regular lattice models are carried
out and a relationship between the continuum and element properties are presented [34, 22]. This
regularization is based on the assumption of the fact that the stored strain energy of the continuum
should be equal to the stored strain energies in each discretized Voronoi cells.
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After the regularization of the lattice model and with minimization of the potential energy of
the system, the load and displacements in each time step are determined. The bi-linear softening
scheme is also implemented to model the quasi-brittle material behavior which is found in different
geomaterial [20].
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1

2
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3.2.3. Hydro-mechanical lattice model

The existing hydro-mechanical lattice models are based on the assumption of dual lattice net-
work, where the mechanical lattice elements transfer the mechanical loads between two nodes and
hydraulic conduct elements mostly perpendicular to the mechanical elements transfer the hydraulic
and gas flow between conduct nodes [16, 17]. The implemented hydro mechanical lattice model is
based on the mass conservation of fluids in the continuum.
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According to the finite-discrete element method (FDEM) [27], the physical and artificial cavities
in a domain are defined. Each conduct node represents an artificial cavity connected through
conductive elements, where the hydraulic conductivity is governed based on parallel plate flow
cubic flow rules.
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′

Ra = 12νf

∫ sj

si

1
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6νf (aj + ai)

(aiaj)
2 L
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When an artificial cavity is saturated, the amount of excessive fluid mass flowing inside the
cavity will result in hydraulic pressure, which will be then transformed into the mechanical mode.
If the cavity is not saturated, then the hydraulic pressure is equal to zero.

P t = P t−1 +Kf
∆m

ρfV t
cavity

if Srt = 1 (8)

With the implementation of measured pore pressures into the mechanical lattice nodes, the pore
pressure diffusion and the change of hydraulic conductivity with crack opening are simulated. Both
the pressure or flow rate controlled scheme can be implemented in this model.

3.3. Variational phase-field model

Phase-field models have become one of the standard approaches to the simulation of fracturing
recently. The approach currently accepted as a variational phase-field model was first introduced
by [8] as a regularized model of Francfort and Marigo energy functional [14]. Since this inception,
the approach has been further studied for brittle and cohesive [9, 18, 4, 24, 47, 35, 48, 3, 29,
49, 45, 39] including advanced numerical solution schemes [15, 13]. Lately, its application ranges
from ductile fracturing [3, 31, 25, 2] to fatigue [1, 44], desiccation fracture [30, 12], and dynamic
fracturing [10, 7, 19, 43, 26].

3.3.1. Variational approach to hydraulic fracturing

Multiplying (1) by a test function φ ∈ H1(Ω \ Γ) that vanishes on ∂ΩD and applying Green’s
formula yield:∫

Ω\Γc

C
(
ε(u)− α

Nκ
ppI
)
: ε(φ) dΩ =
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N

t · φ dΓ−
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pf (φ · nΓ) dΓ,
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Then the weak form of the static equilibrium equations are written as

P :=

∫
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ψ (u, pp) dΩ−
∫
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1

2
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:
(
ε(u)− α

Nκ
ppI
)

(10)

is the poroelastic strain energy density [50].
Following the variational approach to brittle fracture proposed by Francfort and Marigo [14],

we can define the total energy as

E = P +Gc

∫
Γc

dΓ. (11)

In order to reqularize the discontinuities involved in Eq. (11), we follow the approximation
proposed by Bourdin et al. [8, 11], which is now widely known as variational phase-field, and with
the introduciton of the phase-field variable d, we obtain

E(u, d; p) =

∫
Ω

(1−d)2ψ(u) dΩ−
∫
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N

t·u dΓ+
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4cw
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(
w(d)

`
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)
dΩ+

∫
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where d takes 0 when undamaged and 1 for a fully damaged state, cw is a normalization parameter

defined as cw :=
∫ 1

0

√
w(s)ds. Various possible forms of the dissipative energy function w(d) have

been proposed [8, 24, 32, 7, 23] and in this study a linear form w(d) = d is employed as in [50, 45].
The originally proposed energy functional (12) supports a contribution to the damage development
from the entire strain energy ψ. However, this translates into an identical behaviour of the material
under either in tension and compression and can also result in over penetration of the crack [4]. In
order to circumvent such behavior, the strain energy is normally split into the part that drives the
damage ψ+ and the remaining ψ− [32] as:

E(u, d; p) =

∫
Ω

(1−d)2ψ+(u)+ψ−(u) dΩ−
∫
∂NΩ

t·udΓ+
3Gc

8
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(13)
Several approaches for this split are available but this study employs the model known as spectral
split [4] where the strain energies are split based on the sign of the principle strain, because it is able
to provide a high contrast in the compressive-tensile strength ratio typically required in rocks [26].
With this split, the strain tensor is decomposed as:

ε = εiMi with Mi = n(i) ⊗ n(i) (14)

where e(i) are the eigenvectors of the strain tensor and parentheses around an index indicate that
no sum is taken. Then the strain energies are defiled as:

ψ± =
λ

2

(
〈ε1 + ε2 + ε3〉±

)2
+ µ

[(
〈ε1〉±

)2
+
(
〈ε2〉±

)2
+
(
〈ε3〉±

)2]
. (15)

3.3.2. Numerical implementation

In the variational phase-field model development in this study, leak-off to the rock mass is
neglected given the ultra-tight permeability of rock salt. Therefore, pp is constant and can be
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regarded as pp = 0 and p′f = pf − pp in the model. However, for the sake of conciseness, notation
of p′f = p is adapted hereafter. Another simplification made is that p is spatially constant provided
that the pressure loss within the crack is negligible. Then Eq. (12) is solved by the alternate
minimization or staggered scheme with respect to the displacement u and the damage d with a
constraint of prescribed time-evolving fluid volume which must be equal to the crack volume i.e.
Vinj = Vcrack(=

∫
Ω
u · ∇ddΩ), see [51]. Thus, the minimisation problem can be stated as

(u, d; p)∗ = arg minE(u, d; p)u ∈ H1

d ∈ H1, dt ⊂ dt+∆t

. (16)

with the constrain of:

Vinj =

∫
Ω

u · ∇ddΩ (17)

The first variation of the energy functional with respect to u is given by

δE(u, d, p; δu) =
1

2

∫
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ε(δu) :
{

(1− d)2C+ + C−
}
: ε(u) dΩ

−
∫
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∫
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where C± is the tangent stiffness tenser defined as

C± =
∂

∂ε

(
∂ψ±

∂ε

)
. (19)

The first variation of the energy functional with respect to d is given as

δE(u, d, p; δd) = −
∫

Ω

dδdC+( ε(u)) : ε(u) dΩ

+
3Gc

8

∫
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dΩ +
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pu · ∇δddΩ,

(20)

In our analysis, as the material is under the external loading, the force equlibrium is decomposed
into following two problems: 

∇ · σ(up) = 0 in Ω \ Γc,

σ · n = 0 on ∂ΩNp
,

up = up0 on ∂ΩDp
,

σ± · nΓ± = −nΓ± on Γ±c .

(21)

and 
∇ · σ(us) = 0 in Ω \ Γc,

σ · n = t on ∂ΩNs ,

us = us0 on ∂ΩDs ,

σ± · nΓ± = 0 on Γ±c .

(22)
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Then the solution to (1) is obtained from u = us + pup. Substituting into Eq. (17) yields

Vinj =

∫
Ω

us · ∇ddΩ + p

∫
Ω

up · ∇ddΩ. (23)

Thus the fluid pressure is obtained as

p =
Vinj − Vs

Vp
, (24)

where

Vs =

∫
Ω

us · ∇ddΩ, (25)

and

Vp =

∫
Ω

up · ∇ddΩ. (26)

Algorithm 1 Incorporation of the volume constraint in the phase-field model.

1: repeat
2: Update the injected volume, Vinj(tn + ∆t)
3: repeat
4: Solve for up

5: Solve for us

6: Calculate pressure, p =
Vinj−Vs

Vp

7: Update the displacement, u = us + pup

8: Solve for d
9: until ‖d− dn‖ < 10−4

10: until V < Vfinal

4. Results and discussion

4.1. LEM result

The dual lattice element method is implemented to simulate the hydraulic fracture. 5 depicts
the cross-section of simulated setup using LEM. The total number of lattice (mechanical) and
conduct (hydraulic) elements are around 60000 and 400000. The experimental setup shown in ??
is implemented into dual LEM and the developed fractures and flow path are shown in 5(a) and
5(b). Similarly, the second stress configuration, see ??, is simulated and the fracture surfaces as
well as flow paths are shown in 6(a) and 6(b), respectively.

Mechanical properties of saltstone used for simulation are listed in 1.

4.2. VPF result

A computational domain for the variational phase-field model is depicted in Fig 7. Relying on
the symmetry of the domain, 1/4 of the domain was simulated. The whole domain was discretized
with first-order tetrahedral elements. The total element count is 27,917,126 with 5,432,325 nodes.
and simulated crack development in Fig 8.
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Figure 4: The ME2 fist stress configuration in dual LEM.

(a) The developed fractures shown with red surfaces in Z-X
cross-section plane (LEM).

(b) The developed flow path shown with blue surfaces in
Z-X cross-section plane (LEM)

Figure 5: The simulation of fluid driven percolation shown in ??
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(a) The developed fractures shown with red surfaces in Z-X
cross-section plane (LEM)

(b) The developed flow path shown with blue surfaces in
Z-X cross-section plane (LEM)

Figure 6: The simulation of fluid driven percolation shown in ??

Table 1: Mechanical properties

Parameter Value

K 16.7 GPa
G 10 GPa
Gc 100 Pa m
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Figure 7: A computational domain for the variational phase-field model.

5. Conclusions
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for fatigue fracture - 1D analysis. Pamm, 18(1):e201800207, 2018.
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