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According to the references [1,2], a modified deformation gradient, F, is introduced
to compute stresses in order to alleviate the spurious locking exhibited by the standard
bi-linear and tri-linear elements near the incompressible limit. The deformation gradient
F can be expressed as a composition of dilatational change and deviatoric change as

F =F,F,

With (Fy), = det[Fo]/"I and Fy = det[F]~/"F,, F is defined as the composition of
the deviatoric component of F with the volumetric component of Fy as

with Fy the value of F at the element center, n the space dimension.
Alternatively, Fy can be computed as a average value as

Ji,, FdQ
0= Jo, 492
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Hereafter, we denote (ie‘:t[g]) " as a.

1 Equilibrium equations

We assume that {Q' : x € R"} is the current deformed configuration, {Q2 : X € R"} is
the reference configuration, and ¢(X) is the coordinate mapping {¢(X) : Q@ — Q'} such
as x = ¢(X). The displacement and its gradient can be written as

u=x—-X=9¢X)-X, (1)
F = Vo(X). (2)

Let S is the space of admissible deformations defined by
S=0¢:Q—=R"det(Vx9o) >0, 9lan, = o, (3)
and V, is the tangent space to S at ¢ as

V= dwod: Q- R det(Vxo) > 0,dw o ¢|an, =0, (4)



In the total Lagrangian formulation, the equilibrium equations are derived from the
principle of virtual work in the reference configuration 2. This leads to find ¢ € S such
that Vdw € V, it satisfies

/ S : dE(dw)dQ = / f - dwd2 +/ dw - 7dl' (5)
e . 09|

where S is the second Piola-Kirchhoff stress tensor, E is the Green-Lagrange strain cal-
culated with F and f is the external load vector, The Green-Lagrange strain is defined
by

E = %(FTF — 1), (6)
Using the F bar method, the modified Green-Lagrange strain E is
B %(FTF 1), (7)
= %(QQFTF —a’ T+’ 1), (8)
=o’E + %(oz2 - 1)L (9)
Consequently, the stress is computed as
S :=S(E). (10)

2 Linearization

2.1 Basic derivatives

To linearize the equilibrium equations, we first derive some fundamental derivatives.

2.1.1 Directional derivatives

The directional derivative of a multivariable differentiable (scalar) function along a given
vector v at a given point x intuitively represents the instantaneous rate of change of the
function, moving through x with a velocity specified by v: The directional derivative of
a scalar function f(x),x € R" along a vector v € R" is the function V, f(x) defined by
the limit:

fx+hv)—f(x) 9 .
h - %f(x + hV) |hmh—>0 (11)

If f(x) is differentiable at x, the following equation holds after applying the first order
Taylor approximation to f(x + hv) in the above definition

REN

Vo (%) = VIV = A4 ) i (12)

We will use the definition of directional derivatives to simplify the linearization.

2.1.2 Virtual deformation gradient dF

dF = V,Fdw = E%F(gb + hdw) |iim,,_,,= Vdw (13)



2.1.3 Virtual strain dE
1
dE = VsEdw = 5((VdW)TF + FTVdw) (14)

2.1.4 Virtual strain dE

Therefore, the variation of the modified Green-Lagrange strain gives
dE = o*dE + a(2E + I)da. (15)

Note that the derivative of the determinant of a matrix with respect to the matrix itself
is used to obtain the above derivatives, which is

0 -T
7 (det(A)) = det(A)A™T. (16)
This gives
da = S(F;T : dFy — F~ . dF), (17)
H
== S (" Vdw, — FT: Vdw) (18)
(19)
Consequently,
dE = o®dE + o(2E + 1) (% (Fy™ : Vdwy —F " de)) (20)
1
= a2 (dE +-(2E+1) (Fo" : Vdwo —F " de)) (21)

2.1.5 Jacobian

Assume that the body force f and the traction 7 are independent of the displacement,
the Jacobian for the Newton-Raphson method can be obtained by deriving the variation
of the virtual strain energy as

d. / S(E) : dBdQ) — / V.(S(E) : dE)sud®. (22)
with du € V¢
According to the directional derivative rule,
0 _ _
V.(S(E) : dE)ou = o (S(E(¢ + héu)) : dE(¢ + hdn)) |iimy o0, (23)
8S( (¢ + hou) OE(¢ + héu)
= OE(o 1 how) o : dE(¢ + hou) |iim,_, (24)
0
+ S(B(6 -+ how) : —-(AB(0 + hw)) lim, (25)



where OS(E(¢ + héu)/OE(¢ + hou) |iim, .= OS(E(¢)/OE(¢) is the material tangential,
which is a forth order tensor, hereafter we denote it as C.

Since 8E( how)
+ hou _ _
TEO L | o= VoB(9)u = 5B(5), (26)
we have
_ 1
OE = o? <5E + H(2E +1I) (Fy ' : Vouy—F " vau)) : (27)

by the same way deriving dE.
Expanding O(dE(¢ + hou)/0h |im,_,, leads to

o - 0 1
—(dE(¢ + hon)) |im,_,, = o (a2 (dE + H(2}3 +1I) (Fg" : Vdwo —F T de))) [T

oh
(28)
1 _T _T O
=2a | dE + H(2E +1) (Fy ' : Vdwy — F~" : Vdw) a_h [T —
(29)
odE 202 OE
+ QQW |limh_,0 +T% |limh_,0 (FO_T . VdWO — F_T . VdW)
(30)
a? o, o
# 2B+ (5 i Vo = 2 (F) i V)
(31)
where
Oa Oa(¢ + hou o _
. [ % iy, o= Vuaou = dov = - (FOT :Véuy—F T Véu) , (32)
OdE 10
o im0 = 5%((VdW)TF +FIVAW) [y, (33)
1
— 5((vozw)Tvcsu + (Vou)"Vdw), (34)
OE OE(¢ + héu 1

O o= TSRO = L (VoW + FTVu), (3)

oF ;T OF Y OFo(¢ + hdu ~ ~
8—;]1, ‘limh_,(): 8F0‘0 0< 8}], ) ‘limh_)(): _FOT ® FOT : V(SU(], (36)

OF T OF~T OF (¢ + hdu B B
oh iy, o= OF ( oh ) ltimy, o= —F ToFT:vViu (37)



We have

d , - _
(dB(0 + how) [, ., = S(dE) (39)

2

2 1
— % (dE + H(2E +1I) (Fy " : Vdwo —F " de)) (39)

(Fg ' :Vouy—F': Véu) (40)
OdE
=+ &2 ah ‘limhﬁo (41)
2
+ 2 ((Vou)"F + FTVou) (F; " : Vdw, — F~T : Vdw)
n
(42)
2
— %(2}3 +I) (Fo " @Fy" : Véug : Vdwo — F T @ F " : Véu : Vdw)
(43)
Finally, we obtain the expression the variation of the virtual strain energy as
/ V,(S(E) : dB)sud® / C . 0F : dBdQ) (44)
Qe Qe
+/ S(E) : §(dE(¢ + héu))dS. (45)
3 Finite element
After the discretization with the Galerkin approach, we have
du=Néu, du=Ndu (46)

with N the shape functions, du and du the arbitrary virtual nodal displacements. This
gives
OE - OE -
= :du, OE=—:/u. 47
oa o (47)
Assuming that stress tensor and strain tensor are symmetry, and considering the
matrix form of OE/ou gives

dE

OE
on

where B = B; + B,; with B,, and B,; the linear and non-linear parts of the B matrix,
respectively.

B. (48)

3.1 Modified Jacobian

Additional B matrix from dE and §E
As for dE, let’s denote o?(2E + 1) (Fy " : Vdwy — F~T : Vdw) /n as dé, which gives

dE = o*dE + d& (49)



Expanding (Fy ' : Vdwy — F~T : Vdw) gives:
(Fo" : Vdwy — F~ 7 : Vdw) = (Fy7)yydirl N2 (&) — (F7)dif N5 = (qo — q)dw, (50)
where q is a 1 X n - NE matrix or a transposed vector as

d = (Qcol 1, eol 2)5 OF A = (Aol 1, Aeol 2, Ucol 3) (51)
Qeol i = ((F_l)jiNé‘a (F_1>jiN3‘u 7<F_1)jiN§E) , Gy =1, dim. (52)

with NE the number of nodes, and q, the value of q at the element center &.
This can be written into a matrix form as

[dz] = Bdw, (53)
with [dé] the vector form of dg, and

B =28 + (a — a). (54

where 2E + 1] = (2Ey; + 1,2Ey + 1,2E33 + 1,2FE5)T for plane strain problems, and
2E+ 1) = (2B, +1,2E5 + 1,2E33 +1,2E19,2F53, 2E13)T for 3D problems, respectively.
Note: the shear strain Fi5, Fo3 , Ei3 are assumed being scaled with V2 for the
computation with the Kelvin vector.
The same for 6E, we have 6z = Bit. Since dE = o2dE + d&,

[dE] = (o’B + B)dw (55)

where [dE] means the vector form of dE.
We denote a’B + B as B, which simplifies the expression of the Jacobian from [, C:

OE : dEdQ) as

C- (5E) : dEdQ matrix-vector form / BT[C]BdQ (56)

Qe Qe

where [C] is matrix from of C.

3.2 Additional contributions to Jacobian from [, §(dE)dQ
3.2.1 Term [, a’S:4(dE)dQ = [, S: a*ddE/OhdQ |im,_,

From this term, we obtain the standard G matrix related Jacobian contribution as

/ o*G1[[S]|Gd (57)

e

with [[S]] for a matrix with stress matrix as diagonal blocks.

202 1
3.2.2 Term with % <dE + H(QE +1I) (Fg" : Vdwo —F T de))
(Fg™ : Véuy — F~T : Véu)

The corresponding term in the linearized weak form is

n

202 1
/ S: (dE+H(2E+I) (FET:VdWo—F‘TrVdW)) (58)

(Fo" : Véug —F~ " : Vou) dQ, (59)



which can be written:

2
= / S:dE (Fy" : Vouy — F~ ' : Véu) de, (60)
Qe

n

Note that B o
S : dE = (Bdw)"[S] (61)

with [S] the stress in vector type, e.g. the stress in the Kevlin vector.

While

(FyT : Véuy — F~ T : Véu) = (qo — g)du (62)
Therefore the additional Jocobian obtained from this term is
2 _
= [ B8 - a0 (63)
2a° OE
3.2.3 Term with %% im0 (FoT : Vdwg — F~T : Vdw)
OE
Note that — ah llimy, o= OE in that term, the term corresponding integration term is
/ —S SE (Fy" : Vdwy — F~ 1 : Vdw) dQ (64)
We see that )
S : 6E = [S]"Bdu (65)

with [S] the stress in vector type.
The same for (Fy " : Voug — F~T : Véu), the discretized of (Fy ' : Vdwy — F~T : Vdw)
takes the form

(F, ™ Vdw, — F": Vdw) := (q — q)dw = dw (qf — q"") (66)

Therefore the integration can be written as
/ dw' o*(qlr — q")[S]" BoudS (67)

This Jacobian contribution from this integration is

2 [ a*a - anisiBan (69

2
3.2.4 Term with —a—(2E+I) (FoT@Fy™ : Véuy : Vdwy — F T@F-T: Véu: Vdw)
n

The corresponding integration is

1
—= / o’S: (2E+1) (FyT @ Fy" : Vouy: Vdwy —F T @F " : Véu: Vdw) dQ (69)
n

Note that F"T @ F~T: Viu: Vdw = (F~ T : dw)(F~T : Véu)



From the above description, we know that F~T : Viu := qéﬁ and FyT : Vou := qoéAu
after discretization. Therefore, the integration can be written as

1
- / ’S:2E+1) (F" @ Fy" : Viouy: Vdwy —F T @F " : Véu: Vdw) d
e (70)
1
= _H/ a’S : (2E +1) ((qodw) " qodu — (qdw) " qdu) d©, (71)
1
= _H/ a’S: (2E +1) (dw)"qf gqoéu — dw"' q"gdu) dQ, (72)
Therefore the Jacobian contribution from this term is
1
_H/ o’S: (2E+1) (qfqo — 9”q) de2. (73)
Qe

Note that S : (2E + I) is a scalar, and it can be computed by the dot product of stress
vectors as [S] - [(2E + I)].

3.3 Jacobian and residual

Finally, we obtain the Jacobian for the total Lagrange formulation with the F bar method:

/ B'[C]BdQ + / o*GT[[S]|Gd +§ / (B)T[S](qo — q)df (74)
+ %/ (g — q'")[S]"BdQ — %/ﬂ o’S: (2E+1) (qfqo — q"q) dQ  (75)

With the equilibrium equation (5), the discretized residual is

R= [ B[S|dQ— / FNAQ — / 7NdI' = 0 (76)
. 09|,

Qe

with N the shape function matrix.
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