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1 HT process

The hydro-thermal (HT ) process in porous media consists of the coupling of groundwater and
thermal flow processes. Both processes are described using partial differential equations (pde) of
parabolic type.
Sec. 1.1 is a general motivation to parabolic pde’s which is very similar to [1].
Further reading: [4] [5] [2] [3]

1.1 Balance Equations

Let Ω be a domain, Γ the boundary of the domain and let u be an intrinsic quantity (for instance
mass or heat) and the volume density is described by a function S(u). The amount of the quantity in
the domain can vary within time by two reasons. Firstly, new quantity can accumulate by flow over
Γ or secondly it can be generated due to the presence of sources or sinks within Ω. Consequently,
the balance reads

(1.1)
∂

∂t

∫
Ω
S(u(x, t))dx = −

∫
Γ
〈J(x, t)|n(x)〉 dσ +

∫
Ω
Q(x, t)dx,

where J(x, t) is the flow over the boundary, n is normal vector pointing outside of Ω, dσ is an
infinitesimal small surface element and Q(x, t) describes sources and sinks within Ω. Further math-
ematical manipulations leads to

(1.2)
∫

Ω

∂S(u(x, t))

∂t
dx+

∫
Γ
〈J(x, t)|n(x)〉 dσ −

∫
Ω
Q(x, t)dx = 0.

Applying the theorem of Gauss yields to

(1.3)
∫

Ω

∂S(u(x, t))

∂t
dx+

∫
Ω

div J(x, t)dx−
∫

Ω
Q(x, t)dx = 0.

Finally,

(1.4)
∫

Ω

[
∂S(u(x, t))

∂t
+ div J(x, t)−Q(x, t)

]
dx = 0.

Since the domain is arbitrary it holds:

(1.5)
∂S(u(x, t))

∂t
+ div J(x, t)−Q(x, t) = 0.

Depending on the constitutive law that describes the flow J , we obtain the balance equation of the
considered process. Important practical laws are

(1.6) J (1) = −K gradu = −K∇u

which describes diffusive flow and

(1.7) J (2) = cu (where c is a velocity vector)
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which describes advective flow or a combination of (1.6) and (1.7). For instance, substituting (1.6)
in (1.5) leads to the following parabolic partial differential equation:

(1.8)
∂S(u(x, t))

∂t
−∇ · [K(x, t)∇u(x, t)]−Q(x, t) = 0,

while the description of the flow by a combination of (1.6) and (1.7) yields to

(1.9)
∂S(u(x, t))

∂t
−∇ · [K(x, t)∇u(x, t)− cu(x, t)]−Q(x, t) = 0.

1.2 Groundwater Flow

1.2.1 Constitutive Law: Darcy Flow

In the modeling of groundwater flow we assume the validity of the Darcy law:
(1.10)

q = − κ

µ(T )
(grad p+ %f (T ) · g · ez) = − κ

µ(T )

grad
p+ %f (T ) · g · z︸ ︷︷ ︸

Ψ

 = − κ

µ(T )
gradΨ

where

• T is the temperature in [Θ]

• q(x, t, T ) is the Darcy velocity in
[
L
T

]
• p(x, t) is the pressure

[
ML
T 2

1
L2

]
,

• κ is the anisotropic intrinsic permeability tensor of the porous medium (that can depend on
the saturation S

[
L2
]
which will lead to Richards flow)

• µ(T, p) is the temperature and pressure dependent dynamic viscosity
[
ML
T 2 · T

]
,

• %f (x, t, T, p) is the temperature and pressure dependent mass density of the fluid
[
M
L3

]
,

• g the gravitation constant
[

L
T 2

]
1.2.2 Balance Equation

In the groundwater flow the function S in the balance equations (1.8) or (1.9) is replaced by
φρ(x, t, p) :

(1.11)
∂φρ(p, T )

∂t
− div

κ

µ(T )
gradΨ−Q(x, t) = 0

where

• φ is the porosity of the solid

• Q(x, t) describes the inner sources or sinks, in coupled processes sources and sinks Q can
also result from changes of the other primary variable, for instance through the changing of
temperature sources and sinks can arise

3



For the implementation it is assumed that the medium is incompressible, i.e., the porosity does not

change and thus
∂φ

∂t
= 0. So the first term of (1.12) is

∂φρ(p, T )

∂t
=

∂φ

∂t︸︷︷︸
=0

%(p, T ) + φ
∂%(p, T )

∂t
= φ

(
∂%

∂p

∂p

∂t
+
∂%

∂T

∂T

∂t

)

As a part of the Boussinesq approximation it is assumed that the last term of the above equation
∂%

∂T

∂T

∂t
vanishes. Furthermore, it is assumed that the density depends linearly on the pressure, i.e.

∂%

∂p
is constant. Under this assumptions it is possible to summarize the (constant) porosity and the

constant derivation
∂%

∂p
into a new constant S and (1.11) changes to

(1.12) S
∂p

∂t
− div

[
κ

µ(T )
gradΨ

]
−Q(x, t) = 0

1.2.3 Boundary Conditions

p− gD,p = 0 on ΓD (Dirichlet type boundary conditions)(1.13) 〈
κ

µ(T )
gradΨ|n

〉
+ gN = 0 on ΓN (Neumann type boundary conditions)(1.14)

1.2.4 Weak Formulation

Multiplying (1.12) with −1 and summing up with (1.14) leads to

(1.15) − S∂p
∂t

+ div

[
κ

µ(T )
gradΨ

]
+Q(x, t) +

〈
κ

µ(T )
gradΨ|n

〉
+ gN = 0.

Since (1.15) holds true for arbitrary points of the domain, the equation stays valid if it is multiplied
by test functions v, v̄ ∈ H1

0 (Ω) and the integration over the domain Ω and the Neumann boundary
ΓN,p, respectively:
(1.16)∫

Ω
v

(
−S∂p

∂t
+ div

[
κ

µ(T )
gradΨ

]
+Q(x, t)

)
dx+

∫
ΓN

v̄

(〈
κ

µ(T )
gradΨ|n

〉
+ gN

)
dσ = 0

or equivalently
(1.17)

−
∫

Ω
vS
∂p

∂t
dx+

∫
Ω
v

(
div

[
κ

µ(T )
gradΨ

])
dx+

∫
Ω
vQ(x, t)dx+

∫
ΓN

v̄

〈
κ

µ(T )
gradΨ|n

〉
dσ+

∫
ΓN

v̄gNdσ = 0

Integration by parts of the second term of (1.17) results in
(1.18)∫

Ω
v

(
div

[
κ

µ(T )
gradΨ

])
dx = −

∫
Ω

〈
grad v| κ

µ(T )
gradΨ

〉
dx+

∫
Ω

div

(
v

[
κ

µ(T )
gradΨ

])
dx

Using Green’s formula for the last term of the above expression

∫
Ω

div

(
v

[
κ

µ(T )
gradΨ

])
dx =

∮
Γ

〈
v
κ

µ(T )
gradΨ|n

〉
dσ

=

∫
ΓD

〈
v
κ

µ(T )
gradΨ|n

〉
dσ +

∫
ΓN

〈
v
κ

µ(T )
gradΨ|n

〉
dσ

(1.19)
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and the integral on the Dirichlet boundary ΓD vanishes because v = 0 holds. Finally, the expression
(1.18) takes the form
(1.20)∫

Ω
v

[
div

(
κ

µ(T )
gradΨ

)]
dx = −

∫
Ω
〈grad v|K gradΨ〉 dx+

∫
ΓN

〈
v
κ

µ(T )
gradΨ|n

〉
dσ

Putting (1.20) in (1.17) yields to

0 = −
∫

Ω
vS
∂p

∂t
dx−

∫
Ω

〈
grad v| κ

µ(T )
gradΨ

〉
dx+

∫
ΓN

〈
v
κ

µ(T )
gradΨ|n

〉
dσ

+

∫
Ω
vQ(x, t)dx+

∫
ΓN

v̄

〈
κ

µ(T )
gradΨ|n

〉
dσ +

∫
ΓN

v̄gNdσ

Since the test functions are arbitrary, by setting v = −v̄ the second and fourth term cancel each
other. Multiplying by −1 results in

(1.21) 0 =

∫
Ω
vS
∂p

∂t
dx+

∫
Ω

〈
grad v| κ

µ(T )
gradΨ

〉
dx−

∫
Ω
vQ(x, t)dx−

∫
ΓN

vgNdσ.

1.2.5 Finite Element Discretization

(1.22) p ≈
∑

Njaj = Na, Ψ ≈
∑

Njaj + %f g z

where Ni(x, y, z) are the shape functions and ai are coefficients. Galerkin principle:

(1.23) v = Ni

Substituting (1.22) and (1.23) in (1.21) leads to
(1.24)[∫

Ω
NiSNjdx

]
∂aj
∂t

+

[∫
Ω
∇TNi

κ

µ(T )
∇Ndx

]
a+

∫
Ω
∇TNi

κ %f g

µ(T )
ezdx−

∫
Ω
NiQ(x, t)dx−

∫
ΓN

NigNdσ = 0,

i, j = 1, . . . , n, which is a set of linear equations of the form

(1.25) Cȧ+Ka+ f = 0

with

Cij =

∫
Ω
NiSNjdx(1.26)

Kij =

∫
Ω
∇TNi

κ

µ(T )
∇Njdx(1.27)

fi = −
∫

Ω
NiQ(x, t)dx−

∫
ΓN

NigNdσ +

∫
Ω
∇TNi

κ %f g

µ(T )
ezdx(1.28)

1.3 Heat Conduction Equation

1.3.1 Fick’s Law

(1.29) J = −λ gradT

where T is the temperature, λ is the hydrodynamic thermodispersion tensor and J the heat flow
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1.3.2 Balance Equation

The heat conduction equation is also known as the advection-diffusion or convection-diffusion equa-
tion.

(1.30) [%f (x)φcf + %s(x)(1− φ)cs]︸ ︷︷ ︸
:=cp

·∂T
∂t
− div (λ gradT ) + %f · cf (x) · 〈q| gradT 〉 = 0

where

• q is the Darcy velocity defined by (1.10)

• %s is the solid density
[
M
L3

]
• λ hydrodynamic thermodispersion tensor,

λ = λcond + λdisp

• λcond(φ) = φλf + (1− φ)λs is the thermal conductivity

• λdisp(αT , αL) = %fcf

[
αT ||q||2 I + (αL − αT ) qqT

||q||2

]
is the thermal dispersivity, where αT is the

transverse thermodispersivity and αL is the longitudinal thermodispersivity of the fluid

• φ is the porosity

1.3.3 Boundary Conditions

T = gTD on ΓD (Dirichlet type boundary conditions)(1.31)

−〈λ gradT |n〉 = gTN on ΓN (Neumann type boundary conditions)(1.32)

1.3.4 Weak Formulation

The integration of the reformulated Neumann type boundary condition, i.e., 〈λ gradT |n〉+ gTN = 0,
into (1.30), multiplying with arbitrary test functions v, v̄ ∈ H1

0 (Ω) and integration over Ω results in

−
∫

Ω
v · div (λ gradT ) dΩ +

∫
Ω
v · %f · cf (x) 〈q| gradT 〉dΩ

+

∫
Ω
v · cp(x) · ∂T

∂t
dΩ +

∫
ΓN

v̄ ·
[
〈λ gradT |n〉+ gTN

]
dσ = 0

(1.33)

Integration by parts of the first term in the above equation yields:

(1.34)
∫

Ω
v div [λ gradT ] dΩ = −

∫
Ω
〈grad v| [λ gradT ]〉dΩ +

∫
Ω

div [vλ gradT ] dΩ

Using Green’s formulae for the last term of the above expression
(1.35)∫

Ω
div [vλ gradT ] dΩ =

∮
Γ
〈vλ gradT |n〉 dσ =

∫
ΓD

〈vλ gradT |n〉 dσ +

∫
ΓN

〈vλ gradT |n〉dσ

and since v vanishes on ΓD the integral over ΓD also vanishes, this leads to

(1.36)
∫

Ω
v [div (λ gradT )] dΩ = −

∫
Ω
〈grad v|λ gradT 〉 dΩ +

∫
ΓN

〈vλ gradT |n〉 dσ
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Thus (1.33) reads:

0 = −
∫

Ω
〈grad v|λ gradT 〉 dΩ +

∫
ΓN

〈vλ gradT |n〉 dσ +

∫
Ω
v · %f · cf (x) 〈q| gradT 〉dΩ

+

∫
Ω
v · cp(x) · ∂T

∂t
dΩ +

∫
ΓN

v̄ · 〈λ gradT |n〉 dσ +

∫
ΓN

v̄ · gTNdσ

(1.37)

Setting v = −v̄ and multiplying by −1 :
(1.38)∫

Ω
〈grad v|λ gradT 〉 dΩ−

∫
Ω
v · %f · cf (x) 〈q| gradT 〉dΩ−

∫
Ω
v · cp(x) · ∂T

∂t
dΩ +

∫
ΓN

v · gTNdσ = 0

1.3.5 Finite Element Discretization

Analogously to the approximation (1.22) the temperature is approximated by:

(1.39) T ≈
∑

Nibi = Nb

using the same shape functions Ni and time dependent coefficients bi. Using the shape functions
again as test functions (Galerkin principle (1.23)) the discretization of (1.38)) takes the following
form

0 =

[∫
Ω
∇TNiλ∇NdΩ−

∫
Ω
Ni · %f · cf (x) · qT · ∇NdΩ

]
b

+

[∫
Ω
Ni · cp(x)NdΩ

]
db

dt
+

∫
ΓN

Nig
T
Ndσ (i = 1, . . . , n).

(1.40)

This is again a set of equations of the form

(1.41) C ḃ+Kb+ f = 0

with

Kij =

∫
Ω
∇TNiλ∇NjdΩ−

∫
Ω
Ni%fcf 〈q|∇Nj〉 dΩ(1.42)

fi = −
∫

Ω
NiQ(x, t)dΩ−

∫
ΓN

Nig
T
Ndσ(1.43)

Cij =

∫
Ω
NicpNjdΩ(1.44)

1.4 Coupling the Processes

The heat conduction process is coupled with the confined groundwater flow process by the advective
term in (1.30).
The fluid density %f as well as the viscosity µ used in (1.10) (and respectively (1.12)) are coupled

to the heat conduction process by their temperature dependencies.
For the fluid density the following linear dependency

(1.45) %f (T ) = %ref (1− β(x) (T − Tref))

is implemented, where the fluid thermal expansion coefficient β(x)
[
K−1

]
depends on the medium

and Tref is the reference temperature.
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The temperature dependency of the fluid viscosity is implemented by the function:

(1.46) µ(T ) = µ0e−
T−Tc
Tν .

There is not implemented any coupling by source and sink terms in OGS-6, i.e., the density
changes due to temperature changes affects only the buoyancy term %f (T ) · g · z in (1.10). The
currently implemented coupling schema is referred to as the Boussinesq approximation.
These simplified EOS are those used in the large-scale benchmark allowing to apply linear stability

analysis of HT problem [6].
The IAPWS EOS for fluid density and viscosity are also implemented into OGS.
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