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1 Heat conduction equation with phase change

The initial-boundary value problem for the heat equation equation with phase (water-to-
ice) change reads:(

(ϱcp)
eff − ℓϱIR

dϕI

dT

)
∂T

∂t
− λeff∆T − (λIR − λLR)

dϕI

dT
|∇T |2 = QT (x, t) in Ω, (1)

where T = T (x, t) is the temperature distribution subject to the initial and boundary
conditions{

T = T0(x) in Ω (IC),

T = T1(t) on ΓD (BC).
(2)

Equation (1) is the extended version of a classical heat conduction equation and is capable
of modeling ice formation and melting in saturated porous medium. In the OpenGeoSys
documentation it is sometimes termed the ”T+freezing” equation.

In (1), on has

(ϱcp)
eff = (1− ϕ)ϱSRcpS + (ϕ− ϕI)ϱLRcpL + ϕIϱIRcpI,

λeff = (1− ϕ)λSR + (ϕ− ϕI)λLR + ϕIλIR,

where ϕ is the porosity, function ϕI := ϕI(T ) = ϕSI(T ) models the ice volume fraction,
where, in turn,

SI(T ) :=
1

1 + ek(T−Tm)
, k > 1, Tm = 273.15K, (3)

is the so-called ice-fraction indicator function which aims at distinguishing between the
liquid and the ice phases of the fluid (values 0 and 1, resp.) within the physical domain
Ω, as well as at tracing these phases evolution in time. It is a regularized counterpart
of the corresponding Heaviside-like function, see Figure 1. Also in (1), parameter ℓ is the
so-called heat of fusion of ice, whereas all other parameters in (1) are standard ones related
to the classical THM modeling of processes in saturated porous medium.
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Figure 1: On the left: plots of the Heaviside-like ice-fraction indicator function (denoted
as 1−H) and its regularized counterpart SI; on the right: plots of the first-order derivative
of SI.

2 3d-axisymmetric problem of soil freezing around a

BHE

In this section, using (1)–(2), we model heat transfer process, focusing specifically on ice
formation, in a cylindrical soil specimen around a borehole heat exchanger (BHE) – see the
left plot in Figure 2 – which contains a refrigerant of sub-zero temperature. This (negative)
temperature is used to prescribe a Dirichlet boundary condition on the specimen boundary
adjacent to the BHE, what triggers cooling and consequent freezing of water-saturated soil
whose initial temperature was assumed positive.

Simulations are performed using both our OpenGeoSys platform (in the following,
simply termed OGS) and the FreeFem++ open source finite element code [1], thus enabling
verification of the developed for solving (1)-(2) codes. Due to the domain and problem
symmetry, we reduce the 3-dimensional formulation to 2-dimensional one, as also sketched
in Figure 2. In the context of the corresponding weak form, this implies passing from three
dimensional integration in the Cartesian coordinate system first to the integration using
the cylindrical coordinates, which is then reduced to 2-dimensional integration:∫

Ω

f(x, y, z)dxdydz =

∫
Ω

f̂(r, θ, z)rdrdθdz = 2π

∫
S

f̂(r, z)rdrdz,

where f̂(r, θ, z) := f(r cos(θ), r sin(θ), z), and we also assumed Ω = S×2π. In the following,
the variables (r, z) ∈ [0.25m, 16.25m] × [−16m, 0m] =: S are to be re-denoted as (x, y)
respectively, representing the length of S in the radial direction and the depth in the
vertical direction, see Figure 2, right. Note this ’new’ (x, y) are unrelated to the original
3d formulation and the coordinate notations.

The initial condition for T in S is assumed to be a positive function which decays
linearly from surface to bottom:

T0(x, y) := −Tsurf − Tbot.

Hbot

y + Tsurf ,
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Figure 2: On the left: quarter of a cylindrical soil block around a BHE (quarter of a
3-dimensional domain Ω); on the right: reduction to 2d problem with the corresponding
computational domain S, where also (r, z) ∈ S are re-denoted as (x, y).

where Tsurf := 25 ◦C and Tbot = 10◦ C are temperature at surface and at depth of Hbot =
−16 m, respectively.

For modeling the (time-dependent) boundary conditions on ΓD of S, we assume that
within the first t̂ := 10 hours, the temperature on ΓD drops continuously from T0|ΓD

to the
values prescribed by some continuous piece-wise linear function of y and such that at the
last depth segment y ∈ [Hbot, Hfr], where Hfr := −10 m, it becomes negative. (To recall,
the latter mimics the impact of the BHE refrigerant with sub-zero temperature.) Figure 3
sketches the situation, whereas explicitly, for t ∈ [0, t̂ ], we have:

T1(t) :=


−Tsurf − Tbot.

Hbot

(
1− t

t̂

)
y − (Tsurf − Tfr)

t

t̂
+ Tsurf , for y ∈ [Hbot, Hfr],

−Tsurf − Tbot.

Hbot

(
1− t

t̂

)
y − Tsurf − Tfr

Hfr

t

t̂
y + Tsurf , for y ∈ [Hfr, 0],

(4)

where also Tfr := −15 ◦C. For t > t̂, we assume that T1 remains fixed and is given by
T1(t̂) in (4). The heat conduction in the modelled case is, hence, triggered by a significant
difference of temperatures on ΓD and in S.

Finally, the material data used in our computations are depicted in Table 1.
The results of modelling are depicted in Figure 4, where we plot the temperature

distribution in the soil block after 720 hours (30 days) of cooling, and also compare the
outcomes of the two packages used: the OGS and the FF++. Temperature is given in
kelvins. The color legend of T in the corresponding ParaView plots is tuned such that
the amount of ice formed around BHEs can be identified. As expected, ice formation
occurs in the vicinity of ΓD, more specifically, near the segment of ΓD, where the negative
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Figure 3: Temperature evolution prescribed on ΓD within the time interval t ∈ [0, t̂ ], where
t̂ := 10 hours; the horizontal and vertical tickmarks are in meters and ◦C, respectively.

solid phase liquid phase ice phase

ϱSR = 2000 kg/m3 ϱLR = 1000 kg/m3 ϱIR = 920 kg/m3

cpS = 900 J/(kg K) cpL = 4190 J/(kg K) cpI = 2090 J/(kg K)
λSR = 1.1 W/(m K) λLR = 0.58 W/(m K) λIR = 2.2 W/(m K)

ℓ = 3.34 · 105 J/kg

Porosity, ϕ = 0.5
Sigmoid function SI coefficient, k = 2
Melting temperature, Tm = 0 ◦C (273.15 K)

Table 1: Material properties and parameters.

temperature has been prescribed. In the rest of the domain, temperature distribution
remains identical to the initial condition, as can also be expected.

In either case, the P1-based approximations of T were computed. The underlying
meshes are generated with different software but in a way that the number of nodes (and
elements) is comparable (almost identical). Also, each mesh is refined in a finite strip in
the vicinity of ΓD, where ice formation is expected. This is done to be able to resolve
localization due to SI and

dSI

dT
. The total simulation time interval is t ∈ [0, 2592000 s] =

[0 h, 720 h], and the time-step increment ∆t := 900 s = 15min.
In Figure 4, already the qualitative similarity of the OGS and FF++ results can be

observed. Figure 5 presents the corresponding results from Figure 4 plotted over the
three different (directed) lines within the domain S, thus also making the quantitative
comparison feasible. For the selected lines, the compared data seems identical point-wise.
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Figure 4: Comparison of the simulation results obtained by the OpenGeoSys-6 and
FreeFem++ packages (in plots, termed OGS and FF++, resp.) for the setup from Figure
2: temperature T distribution within the block S after 720 hours (30 days) of cooling, 2d
and 3d views; temperature is given in kelvins.
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Figure 5: Comparison of the results for temperature distribution from Figure 4 over the
directed lines within S; origin of the horizontal axis on the right plot corresponds to line’s
origin.
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