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1 Heat conduction equation with phase change

The initial-boundary value problem for the heat equation equation with phase (water-to-
ice) change reads:(

(ϱcp)
eff − ℓϱIR

dϕI

dT

)
∂T

∂t
− λeff∆T − (λIR − λLR)

dϕI

dT
|∇T |2 = QT (x, t) in Ω, (1)

where T = T (x, t) is the temperature distribution subject to the initial and boundary
conditions{

T = T0(x) in Ω (IC),

T = T1(t) on ΓD (BC).
(2)

Equation (1) is the extended version of a classical heat conduction equation and is capable
of modeling ice formation and melting in saturated porous medium. In the OpenGeoSys
documentation it is sometimes termed the ”T+freezing” equation.

In (1), on has

(ϱcp)
eff = (1− ϕ)ϱSRcpS + (ϕ− ϕI)ϱLRcpL + ϕIϱIRcpI,

λeff = (1− ϕ)λSR + (ϕ− ϕI)λLR + ϕIλIR,

where ϕ is the porosity, function ϕI := ϕI(T ) = ϕSI(T ) models the ice volume fraction,
where, in turn,

SI(T ) :=
1

1 + ek(T−Tm)
, k > 1, Tm = 273.15K, (3)

is the so-called ice-fraction indicator function which aims at distinguishing between the
liquid and the ice phases of the fluid (values 0 and 1, resp.) within the physical domain
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Figure 1: On the left: plots of the Heaviside-like ice-fraction indicator function (denoted
as 1−H) and its regularized counterpart SI; on the right: plots of the first-order derivative
of SI.

Ω, as well as at tracing these phases evolution in time. It is a regularized counterpart
of the corresponding Heaviside-like function, see Figure 1. Also in (1), parameter ℓ is the
so-called heat of fusion of ice, whereas all other parameters in (1) are standard ones related
to the classical THM modeling of processes in saturated porous medium.

In next section, we first consider and detail the so-called two-phase Stefan problem
which models melting of a semi-infinite solid slab (in our case, an ice slab), see [1], and
for which the closed-from analytical solution in x ∈ (0,∞) is available. Then, we apply
(1)-(2) to model such melting process and solve the problem in OpenGeoSys.

This is done in the relatively large but finite spacial interval x ∈ (0, 4) by extracting
the initial condition as well as the Dirichlet boundary conditions from the reference ana-
lytical data. The results obtained in x ∈ (0, 4) at various time-steps for the two modeling
approaches are compared.

2 Stefan problem for ice slab melting process

Physically, two-phase Stefan problem models a semi-infinite slab, 0 ≤ x < ∞, initially
solid at sub-zero temperature TI < Tm, which starts melting by imposing a constant
positive temperature TL > Tm at x = 0. We expect that during melting, an interface
between the two phases given by x = X(t) such that X(0) = 0 advances to the right.
The situation is sketched in Figure 2, where the boundary condition for T at infinity, that
is, limx→∞ T (x, t) = TI is also depicted (note that the homogeneous Neumann boundary
conditions may be also physically appropriate, but the exact analytical solution cannot be
derived in this case). Finally, it is assumed that the corresponding phases are characterized
by the material parameters ϱLR, λLR, cpL and ϱIR, λIR, cpI.

We skip the detailed mathematical formulation of the problem, only referring to the
solution equations1. Thus, the temperature evolution during the process is described as

1A comprehensive treatment is available in [1].
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Figure 2: Sketch of a semi-infinite melting slab as a physical situation modelled by the
two-phase Stefan problem.

follows:

T (x, t) :=


TL − (TL − Tm)

erf
(

x
2
√
αLt

)
erf(Λ)

, 0 < x ≤ X(t), t > 0 (Liquid),

TI + (Tm − TI)
erfc

(
x

2
√
αIt

− (1− ϱ⋆)α⋆Λ
)

erfc(ϱ⋆α⋆Λ)
, X(t) ≤ x < ∞, t > 0 (Ice),

(4)

where αL := λLR

ϱLRcpL
and αI :=

λIR

ϱIRcpI
are thermal diffusivity of the corresponding phases,

ϱ⋆ := ϱLR

ϱIR
and α⋆ :=

√
αL

αI
are dimensionless parameters, X(t) := 2Λ

√
αLt, t > 0 is the

position of a melt front (an interface), and Λ > 0 is the root of the transcendental equation

StL
Λexp(Λ)2erf(Λ)

− StI
ϱ⋆α⋆Λexp(ϱ⋆α⋆Λ)2erfc(ϱ⋆α⋆Λ)

=
√
π, (5)

where, in turn, StL > 0 and StI > 0 are the so-called Stefan numbers defined as

StL :=
cpL(TL − Tm)

ℓ
, StI :=

cpI(Tm − TI)

ℓ
, (6)

with, finally, ℓ being a latent heat of fusion.
To calculate all the induced quantities in (4)–(6), we use the material parameters pre-

sented in Table 1. In this case, Λ ≈ 0.3933292421 and the corresponding temperature
evolution within the melting process of slab given by equations (4) can be visualized, see
Figure 3. In the plots, T is depicted at time-steps t ∈ {4 h, 12 h, 28 h, 60 h, 124 h, 240 h}
and in the finite intervals x ∈ [0, 4m] (the left plot) and x ∈ [0, 1m] (the right plot).
The former case intends to illustrate that the problem boundary condition at the infinity,
limx→∞ T (x, t) = TI is indeed fulfilled, whereas the latter one is only the zoom in into the
region in which the comparison between the analytical and the OGS numerical results will
later be performed.
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liquid phase ice phase

ϱLR = 1000 kg/m3 ϱIR = 920 kg/m3

cpL = 4190 J/(kg K) cpI = 2090 J/(kg K)
λLR = 0.58 W/(m K) λIR = 2.2 W/(m K)

ℓ = 3.34 · 105 J/kg

TL = 35 ◦C (308.15 K) TI = −10 ◦C (263.15 K)

Melting temperature, Tm = 0 ◦C (273.15 K)

Table 1: Material properties and parameters for Stefan problem.

Figure 3: Solution (4) at time-steps t ∈ {4 h, 12 h, 28 h, 60 h, 124 h, 240 h} in the intervals
x ∈ [0, 4m] (on the left) and x ∈ [0, 1m] (on the right); dashed lines depict the prescribed
TL and TI in degrees Celsius.

We now model the slab melting process using our IBVP for the T+freezing equation (1)
implemented in the OGS package and compare the simulated results with the analytical
ones presented in Figure 3. In the computations for (1), we restrict ourselves to the interval
x ∈ [0, 4m]. The boundary condition for the unknown T h at x = 0 is TL. At x = 4m, we
set T h := T (4, t), where T (4, t) is the ice-phase part of the Stefan solution in (4) evaluated
at x = 4. Imposing the initial condition is a bit more involving, as the direct use of the
original one TI at t = 0, x ≥ 0 – given its incompatibility with the boundary condition TL,
x = 0, t ≥ 0, as well as that we deal here with a problem with a (strong) boundary layer –
will result in the convergence issues at the first time step of computations. Therefore, in
our solution process, we opt for taking t0 := 3600 s as the initial moment and the initial
condition for T h is hence taken to be the Stefan solution T (x, t0). The simulation time
interval is t ∈ [3600 s, 864000 s] = [1 h, 240 h], and the time-step increment ∆t := 36 s. The
special discretisation of x ∈ [0, 4m] is uniform and uses ∆x = 0.005m. Finally, we set
the porosity ϕ = 1 and compute two cases in terms of the Sigmoid functions coefficient k,
namely, k := 2 (Case 1) and k := 5 (Case 2).

The results obtained with the OGS for both cases at time steps t ∈ {4 h, 12 h, 28 h, 60 h,
124 h, 240 h} are depicted in Figure 4, where we restrict the solution plots to the interval
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[0, 1m]. The melting temperature Tm is also plotted to make the interface visible. It can
be seen that the general trend of temperature evolution in the slab in either simulated
case is the same as the reference one in Figure 3, right. For the lager k (Case 2), the
temperature ’kink’ at the interface became sharper, as expected, since (to recall) k governs
the steepness of SI in the transition zone and thus, the induced spacial thickness of this
zone.

Figure 4: The OGS solution of the IBVP for the T+freezing equation (1) at time-steps
t ∈ {4 h, 12 h, 28 h, 60 h, 124 h, 240 h} in the interval x ∈ [0, 1m] for the two cases of k;
temperature is given in kelvins.

Figure 5 presents comparison of the analytical solution (4) of Stefan problem and the
OGS solution of the IBVP for the T+freezing equation (1) obtained in two cases of k in
the interval x ∈ [0, 4m]. Again, both representations are restricted to x ∈ [0, 1m]. We
observe that despite the fact we have applied two different modeling approaches to the
very same physical problem of slab melting – the original two-phase Stefan problem and
the one given by the T+freezing equation, and hence, neither can be taken as a reference
one – the quantitative discrepancy of the results is minor, especially in Case 2, with the
increased magnitude of k.
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Figure 5: Comparison of the analytical solution (4) to the two-phase Stefan problem and
the OGS solution to IBVP for for the T+freezing equation (1) obtained in two cases of k;
the temperature is given in kelvins.


