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1 The concept of a manufactured solution

The concept of a manufactured solution can be used for code verification purposes in the
case when the analytical solution of the problem of interest is not available.

To illustrate the idea, consider the boundary value problem for the Poisson equation in
two dimensions:

−∆u(x, y) = f(x, y) in Ω,

u = g on ΓD,
∂u
∂n

= h on ΓN ,

(1)

where ∆ = ∂2

∂x2 + ∂2

∂y2
is the Laplace operator, Ω is open and bounded domain, ΓD and

ΓN are non-overlapping parts of domain’s boundary ∂Ω (see Figure 1) where the Dirichlet
and Neumann boundary conditions are formulated, respectively. The direct solution task
reads: for the given data f, g, h, find the unknown u that satisfies (1).

Figure 1: Sketch of the domain and its boundary partition for problem (1).

Assume the inverse situation: u is explicitly known/prescribed1, but the right-hand

1and such that it is twice continuously differentiable in Ω ∪ ∂Ω

1
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sides in (1) are not. The corresponding functions f in Ω and g, h on ∂Ω can be recovered
by plugging u in (1):

f := −∆u, g := u|ΓD
and h := ∂u

∂n
|ΓN

.

Note that a|Γb
means the restriction of a to Γb. Such u is called a manufactured solution.

If we were now to solve (1) with the u-induced right-hand sides f, g, h e.g. numerically, it
would be straightforwardly to compare the computed discretization uh – both qualitatively
and quantitatively – with the already available u, thus verifying the corresponding ingredi-
ents of the numerical implementation (a code, an algorithm, a method etc.). Importantly,
well-posedness of problem (1) with the given u-induced data f , g and h is guaranteed,
since compatibility between these functions is automatically assured.

In the following, we apply the described approach to the initial-boundary value problem
for the heat equation equation:(

(ϱcp)
eff − ℓϱIR

dϕI

dT

)
∂T

∂t
− λeff∆T − (λIR − λLR)

dϕI

dT
|∇T |2 = QT (x, t) in Ω, (2)

where T = T (x, t) is the temperature distribution subject to the initial and boundary
conditions{

T = T0(x) in Ω (IC),

T = T1(t) on ΓD (BC).
(3)

Equation (2) is the extended version of a classical heat conduction equation and is ca-
pable of modeling ice formation and melting in saturated porous medium. In the OGS
documentation it is sometimes termed the ”T+freezing” equation.

In (2), on has

(ϱcp)
eff = (1− ϕ)ϱSRcpS + (ϕ− ϕI)ϱLRcpL + ϕIϱIRcpI,

λeff = (1− ϕ)λSR + (ϕ− ϕI)λLR + ϕIλIR,

where ϕ is the porosity, function ϕI := ϕI(T ) = ϕSI(T ) models the ice volume fraction,
where, in turn,

SI(T ) :=
1

1 + ek(T−Tm)
, k > 1, Tm = 273.15K, (4)

is the so-called ice-fraction indicator function which aims at distinguishing between the
liquid and the ice phases of the fluid (values 0 and 1, resp.) within the physical domain Ω,
as well as at tracing these phases evolution in time. It is a regularized counterpart of the
corresponding Heaviside-like function, see Figure 2.

Also in (2), parameter ℓ is the so-called heat of fusion of ice, whereas all other pa-
rameters in (2) are standard ones related to the classical THM modeling of processes in
saturated porous medium.
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Figure 2: On the left: plots of the Heaviside-like ice-fraction indicator function (denoted
as 1−H) and its regularized counterpart SI; on the right: plots of the first-order derivative
of SI.

2 Simulation of the ice melting-forming process

In this benchmark example, we restrict ourselves to 2-dimensional formulation (2)-(3) in
Ω := (0, 1)2. We also opt for dealing with only the Dirichlet type boundary data, that
is, ΓD := ∂Ω is assumed. The manufactured T = T (x, y, t) with t ∈ (0, 1] is chosen in
such a way that its evolution in time mimics the simultaneous ice melting-forming
process. We will bring the expressions for QT , T0 and T1 required in (2)-(3) explicitly. Our
OpenGeoSys-6 implementation is tested when Ω is discretized by bi-linear quadrilaterals
such that the corresponding FE solution T h at any fixed time step is in Q1-spaces. Finally,
the material data and parameters in (2) used in the numerical experiment are depicted in
Table 1.

solid phase fluid phase ice phase

ϱSR = 2000 kg/m2 ϱLR = 1000 kg/m2 ϱIR = 920 kg/m2

cpS = 900 J/(kg K) cpL = 4190 J/(kg K) cpI = 2090 J/(kg K)
λSR = 1.1 W/(m K) λLR = 0.58 W/(m K) λIR = 2.2 W/(m K)

ℓ = 3.34 · 105 J/kg

Porosity, ϕ = 0.5
Sigmoid function SI coefficient, k = 2
Melting temperature, Tm = 0° C (273.15 K)

Table 1: Material properties and parameters.

Our manufactured solution T for (2)-(3) is given by

T (x, y, t) := b

[
xy cos

(
1

2
πt

)
+ (1− x)y sin

(
1

2
πt

)]
+ c, (5)

where (b, c) = (17,−7 + 273.15). The snapshots of T measured in degrees Celsius are
depicted in Figure 3. Again, from the physics standpoint the evolution of temperature
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Figure 3: Snapshots of T given by (5) in degrees Celsius. The plane in white color represents
zero (melting) temperature Tm = 0° C; hence, the zero-level set of T mimics the interface
between ice and water fractions which moves in time.

defined by such T mimics both ice formation and ice melting within the domain which is
initially partly occupied by ice and liquid.

Using (5), the right-hand side data for (2)-(3) is recovered. The source term QT in Ω
reads:

QT :=

(
(ϱcp)

eff − ℓϱIR
dϕI

dT

)
1

2
πby

[
(1− x) cos

(
1

2
πt

)
− x sin

(
1

2
πt

)]

−(λIR − λLR)
dϕI

dT
b2
[
y2(1− sin(πt)) + x(1− x) sin(πt) +

(
x− 1

2

)
cos(πt)

+x2 − x+
1

2

]
. (6)

The initial condition function T0 in Ω is as follows:

T0(x, y) := T (x, y, 0) = bxy + c.

Finally, assuming ΓD to be composed of all four sides of the unit square, the boundary
condition function T1 is also obtained:

T1(t) :=


c, on {x ∈ (0, 1), y = 0},
by cos

(
1
2
πt
)
+ c, on {x = 1, y ∈ (0, 1)},

b
[
x cos

(
1
2
πt
)
+ (1− x) sin

(
1
2
πt
)]

+ c, on {x ∈ (0, 1), y = 1},
by sin

(
1
2
πt
)
+ c, on {x = 0, y ∈ (0, 1)}.

Figure 4 depicts comparison of the snapshots of T given by (5) and the solution T h

to (2)-(3) obtained with the OGS. The temperature given in Kelvins. Note that we have
made the vertical range of the OGS solutions in the Paraview plots 10−1 rescaled, to make
the comparison feasible. Also, we have tuned the color legend in the Paraview plots such
that the ice and water fractions can be visible/identified.
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Figure 4: Comparison of manufactured solution (left) with the numerical one (right) com-
puted by the OGS at different time steps; temperature is given in degrees Kelvin.


